Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Multi-Objective Image Optimization of Product Appearance Based on Improved NSGA-Ⅱ

    Yinxue Ao1, Jian Lv1,*, Qingsheng Xie1, Zhengming Zhang2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3049-3074, 2023, DOI:10.32604/cmc.2023.040088 - 08 October 2023

    Abstract A second-generation fast Non-dominated Sorting Genetic Algorithm product shape multi-objective imagery optimization model based on degradation (DNSGA-II) strategy is proposed to make the product appearance optimization scheme meet the complex emotional needs of users for the product. First, the semantic differential method and K-Means cluster analysis are applied to extract the multi-objective imagery of users; then, the product multidimensional scale analysis is applied to classify the research objects, and again the reference samples are screened by the semantic differential method, and the samples are parametrized in two dimensions by using elliptic Fourier analysis; finally, the… More >

  • Open Access

    ARTICLE

    Perceptual Image Outpainting Assisted by Low-Level Feature Fusion and Multi-Patch Discriminator

    Xiaojie Li1, Yongpeng Ren1, Hongping Ren1, Canghong Shi2, Xian Zhang1, Lutao Wang1, Imran Mumtaz3, Xi Wu1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5021-5037, 2022, DOI:10.32604/cmc.2022.023071 - 14 January 2022

    Abstract Recently, deep learning-based image outpainting has made greatly notable improvements in computer vision field. However, due to the lack of fully extracting image information, the existing methods often generate unnatural and blurry outpainting results in most cases. To solve this issue, we propose a perceptual image outpainting method, which effectively takes the advantage of low-level feature fusion and multi-patch discriminator. Specifically, we first fuse the texture information in the low-level feature map of encoder, and simultaneously incorporate these aggregated features reusability with semantic (or structural) information of deep feature map such that we could utilize More >

Displaying 1-10 on page 1 of 2. Per Page