Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Alternative Method of Constructing Granular Neural Networks

    Yushan Yin1, Witold Pedrycz1,2, Zhiwu Li1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 623-650, 2024, DOI:10.32604/cmc.2024.048787 - 25 April 2024

    Abstract Utilizing granular computing to enhance artificial neural network architecture, a new type of network emerges—the granular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability to process both numerical and granular data, leading to improved interpretability. This paper proposes a novel design method for constructing GNNs, drawing inspiration from existing interval-valued neural networks built upon NNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzy numbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizes a uniform distribution of information More >

  • Open Access

    ARTICLE

    IoT Smart Devices Risk Assessment Model Using Fuzzy Logic and PSO

    Ashraf S. Mashaleh1,2,*, Noor Farizah Binti Ibrahim1, Mohammad Alauthman3, Mohammad Almseidin4, Amjad Gawanmeh5

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2245-2267, 2024, DOI:10.32604/cmc.2023.047323 - 27 February 2024

    Abstract Increasing Internet of Things (IoT) device connectivity makes botnet attacks more dangerous, carrying catastrophic hazards. As IoT botnets evolve, their dynamic and multifaceted nature hampers conventional detection methods. This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization (PSO) to address the risks associated with IoT botnets. Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically. Fuzzy component settings are optimized using PSO to improve accuracy. The methodology allows for more complex thinking by transitioning from binary to continuous assessment. Instead of expert inputs, PSO data-driven tunes rules and membership More >

  • Open Access

    ARTICLE

    An Improved Lung Cancer Segmentation Based on Nature-Inspired Optimization Approaches

    Shazia Shamas1, Surya Narayan Panda1,*, Ishu Sharma1,*, Kalpna Guleria1, Aman Singh2,3,4, Ahmad Ali AlZubi5, Mallak Ahmad AlZubi6

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1051-1075, 2024, DOI:10.32604/cmes.2023.030712 - 17 November 2023

    Abstract The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis and planning intervention. This research work addresses the major issues pertaining to the field of medical image processing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposes an improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. The better resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In this process, the visual challenges of the K-means are addressed with the integration of four nature-inspired… More >

  • Open Access

    PROCEEDINGS

    Characterization of Mechanical Properties of CNFs and the Assembled Microfibers Through a Multi-scale Optimization-Based Inversion Method

    Shuaijun Wang1, Wenqiong Tu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09926

    Abstract Cellulose nanofibrils (CNFs) and the continuously assembled microfibers have shown transversely isotropic behavior in many studies. Due to fact that the size of CNFs and the assembled microfibers is at the nano and micro scale, respectively, the characterization of their mechanical properties is extremely challenge. That greatly hinders the accurate multi-scale modeling and design of CNFs-based materials. In our study, we have characterized the elastic constants of both CNFs microfibers and CNFs through a Multi-scale Optimization Inversion technology. Through the tensile test of CNFs microfibers reinforced resin with different volume fractions and the micromechanics model More >

  • Open Access

    ARTICLE

    Optimal Management of Energy Storage Systems for Peak Shaving in a Smart Grid

    Firas M. Makahleh1, Ayman Amer2, Ahmad A. Manasrah1, Hani Attar2, Ahmed A. A. Solyman3, Mehrdad Ahmadi Kamarposhti4,*, Phatiphat Thounthong5

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3317-3337, 2023, DOI:10.32604/cmc.2023.035690 - 31 March 2023

    Abstract In this paper, the installation of energy storage systems (EES) and their role in grid peak load shaving in two echelons, their distribution and generation are investigated. First, the optimal placement and capacity of the energy storage is taken into consideration, then, the charge-discharge strategy for this equipment is determined. Here, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to calculate the minimum and maximum load in the network with the presence of energy storage systems. The energy storage systems were utilized in a distribution system with the aid of a peak load More >

  • Open Access

    ARTICLE

    Fusion Strategy for Improving Medical Image Segmentation

    Fahad Alraddady1, E. A. Zanaty2, Aida H. Abu bakr3, Walaa M. Abd-Elhafiez4,5,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3627-3646, 2023, DOI:10.32604/cmc.2023.027606 - 31 October 2022

    Abstract In this paper, we combine decision fusion methods with four meta-heuristic algorithms (Particle Swarm Optimization (PSO) algorithm, Cuckoo search algorithm, modification of Cuckoo Search (CS McCulloch) algorithm and Genetic algorithm) in order to improve the image segmentation. The proposed technique based on fusing the data from Particle Swarm Optimization (PSO), Cuckoo search, modification of Cuckoo Search (CS McCulloch) and Genetic algorithms are obtained for improving magnetic resonance images (MRIs) segmentation. Four algorithms are used to compute the accuracy of each method while the outputs are passed to fusion methods. In order to obtain parts of More >

  • Open Access

    ARTICLE

    Hybrid Global Optimization Algorithm for Feature Selection

    Ahmad Taher Azar1,2,*, Zafar Iqbal Khan2, Syed Umar Amin2, Khaled M. Fouad1,3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2021-2037, 2023, DOI:10.32604/cmc.2023.032183 - 22 September 2022

    Abstract This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm (PLTVACIW-PSO). Its designed has introduced the benefits of Parallel computing into the combined power of TVAC (Time-Variant Acceleration Coefficients) and IW (Inertial Weight). Proposed algorithm has been tested against linear, non-linear, traditional, and multiswarm based optimization algorithms. An experimental study is performed in two stages to assess the proposed PLTVACIW-PSO. Phase I uses 12 recognized Standard Benchmarks methods to evaluate the comparative performance of the proposed PLTVACIW-PSO vs. IW based Particle Swarm Optimization (PSO) algorithms, TVAC based PSO algorithms, traditional… More >

  • Open Access

    ARTICLE

    Tasks Scheduling in Cloud Environment Using PSO-BATS with MLRHE

    Anwar R Shaheen*, Sundar Santhosh Kumar

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2963-2978, 2023, DOI:10.32604/iasc.2023.025780 - 17 August 2022

    Abstract Cloud computing plays a significant role in Information Technology (IT) industry to deliver scalable resources as a service. One of the most important factor to increase the performance of the cloud server is maximizing the resource utilization in task scheduling. The main advantage of this scheduling is to maximize the performance and minimize the time loss. Various researchers examined numerous scheduling methods to achieve Quality of Service (QoS) and to reduce execution time. However, it had disadvantages in terms of low throughput and high response time. Hence, this study aimed to schedule the task efficiently… More >

  • Open Access

    ARTICLE

    Fault Diagnosis in Robot Manipulators Using SVM and KNN

    D. Maincer1,*, Y. Benmahamed2, M. Mansour1, Mosleh Alharthi3, Sherif S. M. Ghonein3

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1957-1969, 2023, DOI:10.32604/iasc.2023.029210 - 19 July 2022

    Abstract In this paper, Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) based methods are to be applied on fault diagnosis in a robot manipulator. A comparative study between the two classifiers in terms of successfully detecting and isolating the seven classes of sensor faults is considered in this work. For both classifiers, the torque, the position and the speed of the manipulator have been employed as the input vector. However, it is to mention that a large database is needed and used for the training and testing phases. The SVM method used in this paper… More >

  • Open Access

    ARTICLE

    Optimal Intelligent Reconfiguration of Distribution Network in the Presence of Distributed Generation and Storage System

    Gang Lei1,*, Chunxiang Xu2

    Energy Engineering, Vol.119, No.5, pp. 2005-2029, 2022, DOI:10.32604/ee.2022.021154 - 21 July 2022

    Abstract In the present paper, the distribution feeder reconfiguration in the presence of distributed generation resources (DGR) and energy storage systems (ESS) is solved in the dynamic form. Since studies on the reconfiguration problem have ignored the grid security and reliability, the non-distributed energy index along with the energy loss and voltage stability indices has been assumed as the objective functions of the given problem. To achieve the mentioned benefits, there are several practical plans in the distribution network. One of these applications is the network rearrangement plan, which is the simplest and least expensive way… More >

Displaying 1-10 on page 1 of 15. Per Page