Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (199)
  • Open Access

    ARTICLE

    Stability Prediction in Smart Grid Using PSO Optimized XGBoost Algorithm with Dynamic Inertia Weight Updation

    Adel Binbusayyis*, Mohemmed Sha

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 909-931, 2025, DOI:10.32604/cmes.2024.058202 - 17 December 2024

    Abstract Prediction of stability in SG (Smart Grid) is essential in maintaining consistency and reliability of power supply in grid infrastructure. Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid. It also possesses a better impact on averting overloading and permitting effective energy storage. Even though many traditional techniques have predicted the consumption rate for preserving stability, enhancement is required in prediction measures with minimized loss. To overcome the complications in existing studies, this paper intends to predict stability from the smart grid… More >

  • Open Access

    PROCEEDINGS

    Solving the Time-Dependent Diffusion Problems by the Method of Fundamental Solutions and the Particle Swarm Optimization

    Tan Phat Lam1,2, Chia-Ming Fan1,*, Chiung-Lin Chu1, Fu-Li Chang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012160

    Abstract In this study, the combination of the Method of Fundamental Solutions (MFS) and the Particle Swarm Optimization (PSO) is proposed to accurately and stably analyze the multi-dimensional diffusion equations. The MFS, truly free from mesh generation and numerical quadrature, is one of the most promising meshless methods. In the implementation of the MFS, only field points and sources, which are located out of the computational domain, are required. The numerical solutions of the MFS is expressed as a linear combination of diffusion fundamental solutions with different strengths. The unknown coefficients in the solution expressions can… More >

  • Open Access

    ARTICLE

    Rapid Parameter-Optimizing Strategy for Plug-and-Play Devices in DC Distribution Systems under the Background of Digital Transformation

    Zhi Li1, Yufei Zhao2, Yueming Ji2, Hanwen Gu2, Zaibin Jiao2,*

    Energy Engineering, Vol.121, No.12, pp. 3899-3927, 2024, DOI:10.32604/ee.2024.055899 - 22 November 2024

    Abstract By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement, information communication, and other fields, the digital DC distribution network can efficiently and reliably access Distributed Generator (DG) and Energy Storage Systems (ESS), exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play (PnP) operations. However, during device plug-in and -out processes, improper system parameters may lead to small-signal stability issues. Therefore, before executing PnP operations, conducting stability analysis and adjusting parameters swiftly is crucial. This study introduces a four-stage strategy for parameter optimization to enhance… More >

  • Open Access

    ARTICLE

    Probabilistic Calculation of Tidal Currents for Wind Powered Systems Using PSO Improved LHS

    Hongsheng Su, Shilin Song*, Xingsheng Wang

    Energy Engineering, Vol.121, No.11, pp. 3289-3303, 2024, DOI:10.32604/ee.2024.054643 - 21 October 2024

    Abstract This paper introduces the Particle Swarm Optimization (PSO) algorithm to enhance the Latin Hypercube Sampling (LHS) process. The key objective is to mitigate the issues of lengthy computation times and low computational accuracy typically encountered when applying Monte Carlo Simulation (MCS) to LHS for probabilistic trend calculations. The PSO method optimizes sample distribution, enhances global search capabilities, and significantly boosts computational efficiency. To validate its effectiveness, the proposed method was applied to IEEE34 and IEEE-118 node systems containing wind power. The performance was then compared with Latin Hypercubic Important Sampling (LHIS), which integrates significant sampling More >

  • Open Access

    ARTICLE

    APSO-CNN-SE: An Adaptive Convolutional Neural Network Approach for IoT Intrusion Detection

    Yunfei Ban, Damin Zhang*, Qing He, Qianwen Shen

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 567-601, 2024, DOI:10.32604/cmc.2024.055007 - 15 October 2024

    Abstract The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things (IoT) networks. The proliferation of unknown attacks and related risks, such as zero-day attacks and Distributed Denial of Service (DDoS) attacks triggered by botnets, have resulted in information leakage and property damage. Therefore, developing an efficient and realistic intrusion detection system (IDS) is critical for ensuring IoT network security. In recent years, traditional machine learning techniques have struggled to learn the complex associations between multidimensional features in network traffic, and the excellent performance of deep learning techniques,… More >

  • Open Access

    ARTICLE

    GRU Enabled Intrusion Detection System for IoT Environment with Swarm Optimization and Gaussian Random Forest Classification

    Mohammad Shoab*, Loiy Alsbatin*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 625-642, 2024, DOI:10.32604/cmc.2024.053721 - 15 October 2024

    Abstract In recent years, machine learning (ML) and deep learning (DL) have significantly advanced intrusion detection systems, effectively addressing potential malicious attacks across networks. This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things (IoT) environment, leveraging the NSL-KDD dataset. To achieve high accuracy, the authors used the feature extraction technique in combination with an auto-encoder, integrated with a gated recurrent unit (GRU). Therefore, the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization (PSO), and PSO has been employed for training the features. The More >

  • Open Access

    ARTICLE

    Robust Particle Swarm Optimization Algorithm for Modeling the Effect of Oxides Thermal Properties on AMIG 304L Stainless Steel Welds

    Rachid Djoudjou1,*, Abdeljlil Chihaoui Hedhibi3, Kamel Touileb1, Abousoufiane Ouis1, Sahbi Boubaker2, Hani Said Abdo4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1809-1825, 2024, DOI:10.32604/cmes.2024.053621 - 27 September 2024

    Abstract There are several advantages to the MIG (Metal Inert Gas) process, which explains its increased use in various welding sectors, such as automotive, marine, and construction. A variant of the MIG process, where the same equipment is employed except for the deposition of a thin layer of flux before the welding operation, is the AMIG (Activated Metal Inert Gas) technique. This study focuses on investigating the impact of physical properties of individual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can help determine a relationship among weld depth… More >

  • Open Access

    ARTICLE

    A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection

    Jyun-Guo Wang*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1149-1170, 2024, DOI:10.32604/csse.2024.052931 - 13 September 2024

    Abstract In many Eastern and Western countries, falling birth rates have led to the gradual aging of society. Older adults are often left alone at home or live in a long-term care center, which results in them being susceptible to unsafe events (such as falls) that can have disastrous consequences. However, automatically detecting falls from video data is challenging, and automatic fall detection methods usually require large volumes of training data, which can be difficult to acquire. To address this problem, video kinematic data can be used as training data, thereby avoiding the requirement of creating… More >

  • Open Access

    ARTICLE

    Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer

    Shengdong Cheng1, Juncheng Gao1,*, Hongning Qi2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 871-892, 2024, DOI:10.32604/cmes.2024.052830 - 20 August 2024

    Abstract Driven piles are used in many geological environments as a practical and convenient structural component. Hence, the determination of the drivability of piles is actually of great importance in complex geotechnical applications. Conventional methods of predicting pile drivability often rely on simplified physical models or empirical formulas, which may lack accuracy or applicability in complex geological conditions. Therefore, this study presents a practical machine learning approach, namely a Random Forest (RF) optimized by Bayesian Optimization (BO) and Particle Swarm Optimization (PSO), which not only enhances prediction accuracy but also better adapts to varying geological environments… More > Graphic Abstract

    Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer

  • Open Access

    ARTICLE

    Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture

    Prasanna Kumar Kannughatta Ranganna1, Siddesh Gaddadevara Matt2, Chin-Ling Chen3,4,*, Ananda Babu Jayachandra5, Yong-Yuan Deng4,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2557-2578, 2024, DOI:10.32604/cmc.2024.051634 - 15 August 2024

    Abstract In recent decades, fog computing has played a vital role in executing parallel computational tasks, specifically, scientific workflow tasks. In cloud data centers, fog computing takes more time to run workflow applications. Therefore, it is essential to develop effective models for Virtual Machine (VM) allocation and task scheduling in fog computing environments. Effective task scheduling, VM migration, and allocation, altogether optimize the use of computational resources across different fog nodes. This process ensures that the tasks are executed with minimal energy consumption, which reduces the chances of resource bottlenecks. In this manuscript, the proposed framework… More >

Displaying 1-10 on page 1 of 199. Per Page