Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Experimental Investigation of Particles Dynamics and Solid-Liquid Mixing Uniformity in a Stirred Tank

    Kai Yang1,2, Qinwen Yao1,2, Yingshan Li1,2, Wanchang Chen1,2, Saleh Khorasani3, Hua Wang1,2, Qingtai Xiao1,2,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2585-2602, 2024, DOI:10.32604/fdmp.2024.050704 - 28 October 2024

    Abstract Particle suspension and deposition dynamics are significant factors affecting the level of mixing quality in solid-liquid two-phase stirring processes. In general, the ability to increase the suspension rate and minimize deposition effects is instrumental in improving the uniformity of particle mixing, accelerating the reaction of involved solid-liquid two-phase, and improving the efficiency of production operations. In this work, suspension and deposition indicator based on the Betti number and a uniformity indicator are introduced and obtained by means of image analysis. The influence of the blade type, rotation speed, blade diameter and blade bottom height on… More > Graphic Abstract

    Experimental Investigation of Particles Dynamics and Solid-Liquid Mixing Uniformity in a Stirred Tank

  • Open Access

    PROCEEDINGS

    Inertial and Particle Shape Effects on Fluid-Particle Suspension Flows: A Resolved SPH-DEM Study

    Yueting Li1,*, Ning Guo1, Zhongxuan Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09970

    Abstract The rheological behavior of fluid-particle suspensions affects the flow dynamics of natural processes such as lavas, flow-type landslides and sediment transport. This study presents results of fully resolved simulations of monodisperse non-Brownian suspensions in a Couette flow using the smoothed particle hydrodynamics (SPH) method coupled with discrete element method (DEM), which allows for simulation of arbitrary-shaped particles. Several benchmark tests have been conducted to verify the reliability of the method. Two density ratios are considered in the study, i.e., 2.65 and 10, with the average particle area fraction varying from 14% to 47% and particle More >

Displaying 1-10 on page 1 of 2. Per Page