Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Investigating the optical and electrical characteristics of As60Cu40-xSex thin films prepared using pulsed laser deposition method

    J. S. Mohammeda,*, F. K. Nsaifb, Y. M. Jawada, K. A. Jasimb, A. H. Al Dulaimia

    Chalcogenide Letters, Vol.20, No.7, pp. 449-458, 2023, DOI:10.15251/CL.2023.207.449

    Abstract In this work, As60Cu40-xSex thin films were synthesized, and the pulsed laser deposition method was used to study the effected partial replacement of copper with selenium. The electrical characteristics and optical characteristics, as indicated by the absorbance and transmittance as a function of wavelength were calculated. Additionally, the energy gap was computed. The electrical conductivity of the DC in the various conduction zones was calculated by measuring the current and voltage as a function of temperature. Additionally, the mathematical equations are used to compute the energy constants, electron hopping distance, tail width, pre-exponential factor, and density More >

  • Open Access

    ARTICLE

    Calculation of the localized and extended energy states density for Ge60Se40-xTex alloy prepared by melting point method

    J. H. Azzawia, B. A. Ahmedb, K. A. Jasimb, E. M. T. Salmanb,*

    Chalcogenide Letters, Vol.20, No.9, pp. 649-656, 2023, DOI:10.15251/CL.2023.209.649

    Abstract The DC electrical conductivity properties of Ge60Se40-xTex alloy with x = 0, 5, 10, 15 and 20). The samples were formed in the form of discs with the thickness of 0.25–0.30 cm and the diameter of 1.5 cm. Samples were pressed under a pressure of 6 tons per cm2 , using a ton hydraulic press. They were prepared after being pressed using a ton hydraulic press using a hydraulic press. Melting point technology use to preper the samples. Continuous electrical conductivity properties were recorded from room temperature to 475 K. Experimental data indicates that glass containing… More >

  • Open Access

    ARTICLE

    Influence of Recycling Waste Glass as Fine Aggregate on the Concrete Properties

    Rafal A. Hadi1,*, Suhad M. Abd2, Hadee Mohammed Najm3, Shaker Qaidi4,5,*, Moutaz Mustafa A. Eldirderi6, Khaled Mohamed Khedher7,8

    Journal of Renewable Materials, Vol.11, No.6, pp. 2925-2940, 2023, DOI:10.32604/jrm.2023.025558 - 27 April 2023

    Abstract Recent years have witnessed an increase in the quantity of waste glass (WG) across the globe. Replacing the fine aggregate with WG is one of the steps toward preserving the natural resources of the environment and creating low-cost concrete. The present study is concerned with replacing fine aggregates with glass powder (GP) at (0%, 15%, 30%, and 50%). It has studied the fresh and hardened properties (compressive strength, tensile strength, hardened density, and slump) for all the mentioned percent replacements. The findings have shown that all mixtures containing GP gave acceptable slump results within the More >

  • Open Access

    ARTICLE

    Fly Ash and Slag as Partial Replacement of Cement for the Synthesis of Low Carbon Cementitious Materials

    Yafei Hu1,2, Keqing Li1,2, Lujing Zheng3, Bin Han1,2,*

    Journal of Renewable Materials, Vol.11, No.5, pp. 2491-2511, 2023, DOI:10.32604/jrm.2023.025129 - 13 February 2023

    Abstract Tailings known as solid waste are generated by the mining industry. The development of tailings as wet shotcrete aggregates has significant economic and environmental benefits. The fine particle size of the tailings results in a large consumption of traditional cement as a cementitious material and insignificant improvement in strength. Therefore, a composite cementitious system of cement and solid waste resources (fly ash and slag powder) is explored for this study. In this paper, the response surface methodology (RSM) is used to optimize the experimental design and a multivariate nonlinear response model with cement, fly ash… More >

  • Open Access

    ARTICLE

    Expansive Soil Stabilization by Bagasse Ash in Partial Replacement of Cement

    Waleed Awadalseed1, Honghua Zhao1, Hemei Sun2, Ming Huang3, Cong Liu4,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1911-1935, 2023, DOI:10.32604/jrm.2023.025100 - 01 December 2022

    Abstract This study examined the effects of using bagasse ash in replacement of ordinary Portland cement (OPC) in the treatment of expansive soils. The study concentrated on the compaction characteristics, volume change, compressive strength, splitting tensile strength, microstructure, California bearing ratio (CBR) value, and shear wave velocity of expansive soils treated with cement. Different bagasse ash replacement ratios were used to create soil samples. At varying curing times of 7, 14, and 28 days, standard compaction tests, unconfined compressive strength tests, CBR tests, Brazilian split tensile testing, and bender element (BE) tests were carried out. According… More >

Displaying 1-10 on page 1 of 5. Per Page