Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    Radial Basis Function and Genetic Algorithms for Parameter Identification to Some Groundwater Flow Problems

    B. Amaziane1, A. Naji2, D. Ouazar3

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 117-128, 2004, DOI:10.3970/cmc.2004.001.117

    Abstract In this paper, a meshless method based on Radial Basis Functions (RBF) is coupled with genetic algorithms for parameter identification to some selected groundwater flow applications. The treated examples are generated by the diffusion equation with some specific boundary conditions describing the groundwater fluctuation in a leaky confined aquifer system near open tidal water. To select the best radial function interpolation and show the powerful of the method in comparison to domain based discretization methods, Multiquadric (MQ), Thin-Plate Spline (TPS) and Conical type functions are investigated and compared to finite difference results or analytical one. Through two sample problems in… More >

  • Open Access

    ARTICLE

    A Lie-Group Adaptive Method to Identify the Radiative Coefficients in Parabolic Partial Differential Equations

    Chein-Shan Liu1, Chih-Wen Chang2

    CMC-Computers, Materials & Continua, Vol.25, No.2, pp. 107-134, 2011, DOI:10.3970/cmc.2011.025.107

    Abstract We consider two inverse problems for estimating radiative coefficients α(x) and α(x, y), respectively, in Tt(x, t) = Txx(x, t)-α(x)T(x, t), and Tt(x, y, t) = Txx(x, y, t) + Tyy(x, y, t)-α(x, y)T(x, y, t), where a are assumed to be continuous functions of space variables. A Lie-group adaptive method is developed, which can be used to find a at the spatially discretized points, where we only utilize the initial condition and boundary conditions, such as those for a typical direct problem. This point is quite different from other methods, which need the overspecified final time data. Three-fold advantages… More >

  • Open Access

    ARTICLE

    A Piecewise Linear Isotropic-Kinematic Hardening Model with Semi-Implicit Rules for Cyclic Loading and Its Parameter Identification

    M. Ohsaki1, T. Miyamura2, J. Y. Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.4, pp. 303-333, 2016, DOI:10.3970/cmes.2016.111.303

    Abstract A simple constitutive model, called semi-implicit model, for cyclic loading is proposed for steel materials used for structures such as building frames in civil engineering. The constitutive model is implemented in the E-Simulator, which is a software package for large-scale seismic response analysis. The constitutive relation is defined in an algorithmic manner based on the piecewise linear combined isotropic-kinematic hardening. Different rules are used for the first and subsequent loading states to incorporate characteristics such as yield plateau and Bauschinger effect of rolled mild steel materials. An optimization method is also presented for parameter identification from the results of cyclic… More >

  • Open Access

    ARTICLE

    A Numerical Method for Estimating the Maximal Temperature Gradients Reached in Fire-Damaged Concrete Structures Based on the Parameter Identification

    Dong Wei1, Yinghua Liu1,2, Zhihai Xiang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.46, No.1, pp. 77-106, 2009, DOI:10.3970/cmes.2009.046.077

    Abstract Taking advantage of the parameter identification, a new numerical method is developed in this paper to estimate the maximal temperature gradients reached in fire-damaged concrete structures. This method can avoid the hypotheses of temperature-time curve and fire duration usually made in conventional numerical methods, availably evaluate the depth and degree of fire damage of concrete structures and consider the effects of localized fire. A material model taking into account the properties of fire-damaged concrete is firstly proposed in the present research. The least-squares estimation and the Gauss-Newton method are used to identify the material parameters of fire-damaged concrete by means… More >

  • Open Access

    ARTICLE

    Parameter identification of beam-column structures on two-parameter elastic foundation

    F. Daghia1, W. Hasan1, L. Nobile1, E. Viola1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.1, pp. 1-28, 2009, DOI:10.3970/cmes.2009.039.001

    Abstract In this paper, a finite element model has been developed for analysing the flexural vibrations of a uniform Timoshenko beam-column on a two-parameter elastic foundation. The beam was discretized into a number of finite elements having four degrees of freedom each. The effect of end springs was incorporated in order to identify the end constraints. \newline The procedure for identifying geometric and mechanical parameters as well as the end restraints of a beam on two-parameter elastic foundation is based on experimentally measured natural frequencies from dynamic tests on the structure itself. \newline An iterative statistical identification method, based on the… More >

  • Open Access

    ARTICLE

    An LGEM to Identify Time-Dependent Heat Conductivity Function by an Extra Measurement of Temperature Gradient

    Chein-Shan Liu1,2

    CMC-Computers, Materials & Continua, Vol.7, No.2, pp. 81-96, 2008, DOI:10.3970/cmc.2008.007.081

    Abstract We consider an inverse problem for estimating an unknown heat conductivity parameter α(t) in a heat conduction equation Tt(x,t) = α(t)Txx(x,t) with the aid of an extra measurement of temperature gradient on boundary. Basing on an establishment of the one-step Lie-group elements G(r) and G(l) for the semi-discretization of heat conduction equation in time domain, we can derive algebraic equations from G(r) = G(l). The new method, namely the Lie-group estimation method (LGEM), is examined through numerical examples to convince that it is highly accurate and efficient; the maximum estimation error is smaller than 10-5 for smooth parameter and for… More >

  • Open Access

    ARTICLE

    Using a Lie-Group Adaptive Method for the Identification of a Nonhomogeneous Conductivity Function and Unknown Boundary Data

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 17-40, 2011, DOI:10.3970/cmc.2011.021.017

    Abstract Only the left-boundary data of temperature and heat flux are used to estimate an unknown parameter function α(x) in Tt(x,t) = ∂(α(x)Tx)/∂x + h(x,t), as well as to recover the right-boundary data. When α(x) is given the above problem is a well-known inverse heat conduction problem (IHCP). This paper solves a mixed-type inverse problem as a combination of the IHCP and the problem of parameter identification, without needing to assume a function form of α(x) a priori, and without measuring extra data as those used by other methods. We use the one-step Lie-Group Adaptive Method (LGAM) for the semi-discretizations of… More >

  • Open Access

    ARTICLE

    Parameter Identification Method of Large Macro-Micro Coupled Constitutive Models Based on Identifiability Analysis

    Jie Qu1,2, Bingye Xu3, Quanlin Jin4

    CMC-Computers, Materials & Continua, Vol.20, No.2, pp. 119-158, 2010, DOI:10.3970/cmc.2010.020.119

    Abstract Large and complex macro-micro coupled constitutive models, which describe metal flow and microstructure evolution during metal forming, are sometimes overparameterized with respect to given sets of experimental datum. This results in poorly identifiable or non-identifiable model parameters. In this paper, a systemic parameter identification method for the large macro-micro coupled constitutive models is proposed. This method is based on the global and local identifiability analysis, in which two identifiability measures are adopted. The first measure accounts for the sensitivity of model results with respect to single parameters, and the second measure accounts for the degree of near-linear dependence of sensitivity… More >

Displaying 11-20 on page 2 of 18. Per Page