Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (178)
  • Open Access

    ARTICLE

    Parallel Computing Performance of Thermal-Structural Coupled Analysis in Parallel Computing Resource

    Jong Keun Moon1, Seung Jo Kim2

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.3, pp. 239-264, 2010, DOI:10.3970/cmes.2010.067.239

    Abstract Large structural problems with high precision and complexity require a high-performance computation using the efficient parallel algorithm. The purpose of this paper is to present the parallel performance of thermal-structural coupled analysis tested on a parallel cluster system. In the coupled analysis, the heat transfer analysis is carried out, and then the structural analysis is performed based on temperature distribution. For the automatic and efficient connection of two parallel analysis modules, the several communication patterns were studied. The parallel performance was demonstrated for the sample and the real application problems, such as a laminated composite material by the DNS(Direct Numerical… More >

  • Open Access

    ARTICLE

    High Velocity Impact Simulation of Brittle Materials with Node Separation Scheme in Parallel Computing Environment

    Ji Joong Moon1, Seung Jo Kim1, Minhyung Lee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.3, pp. 275-300, 2010, DOI:10.3970/cmes.2010.059.275

    Abstract This paper describes the parallelization of contact/impact simulation for fracture modeling of brittle materials using a node separation scheme (NSS). We successfully demonstrated the fracture modeling of brittle materials using a cohesive fracture model. Since a NSS continuously generates new free surfaces as the computation progresses, the methodology requires increased computational time. To perform a simulation within a reasonable time period, a parallelization study is conducted. Particular methods for effective parallelization, especially for brittle materials, are described in detail. The crucial and most difficult strategy is the management of the data structure and communication needed to handle new contact nodes… More >

  • Open Access

    ARTICLE

    A Relocalization Technique for the Multiscale Computation of Delamination in Composite Structures

    O. Allix1, P. Kerfriden1, P. Gosselet1

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.3, pp. 271-292, 2010, DOI:10.3970/cmes.2010.055.271

    Abstract We present numerical enhancements of a multiscale domain decomposition strategy based on a LaTIn solver and dedicated to the computation of the debounding in laminated composites. We show that the classical scale separation is irrelevant in the process zones, which results in a drop in the convergence rate of the strategy. We show that performing nonlinear subresolutions in the vicinity of the front of the crack at each prediction stage of the iterative solver permits to restore the effectiveness of the method. More >

  • Open Access

    ARTICLE

    Node Placement Method by Bubble Simulation and Its Application

    Ying Liu1, Yufeng Nie2, Weiwei Zhang2, Lei Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.1, pp. 89-110, 2010, DOI:10.3970/cmes.2010.055.089

    Abstract In the light of the ideas and treatment technologies about molecular dynamics simulation and bubble meshing, a new approach of node placement for the meshless method called node placement method by bubble simulation (NPBS method), is proposed. Nodes are seen as the centers of the bubbles which can be moved by their interacting forces. Through dynamic simulation, bubbles are placed into a near-optimal configuration, and the centers of bubbles will form a good-quality node distribution in the domain. This process doesn't need updating the mesh connection constantly, i.e., is totally meshfree. Some example results show that the uniform point sets… More >

  • Open Access

    ARTICLE

    Solution Methods for Nonsymmetric Linear Systems with Large off-Diagonal Elements and Discontinuous Coefficients

    Dan Gordon1, Rachel Gordon2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.1, pp. 23-46, 2009, DOI:10.3970/cmes.2009.053.023

    Abstract Linear systems with very large off-diagonal elements and discontinuous coefficients (LODC systems) arise in some modeling cases, such as those involving heterogeneous media. Such problems are usually solved by domain decomposition methods, but these can be difficult to implement on unstructured grids or when the boundaries between subdomains have a complicated geometry. Gordon and Gordon have shown that Björck and Elfving's (sequential) CGMN algorithm and their own block-parallel CARP-CG are very robust and efficient on strongly convection dominated cases (but without discontinuous coefficients). They have also shown that scaling the equations by dividing each equation by the L2-norm of its… More >

  • Open Access

    ARTICLE

    Cell Cycle Modeling for Budding Yeast with Stochastic Simulation Algorithms

    Tae-Hyuk Ahn1, Layne T. Watson1,2, Yang Cao1,1, Clifford A. Shaffer1, William T. Baumann3

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.1, pp. 27-52, 2009, DOI:10.3970/cmes.2009.051.027

    Abstract For biochemical systems, where some chemical species are represented by small numbers of molecules, discrete and stochastic approaches are more appropriate than continuous and deterministic approaches. The continuous deterministic approach using ordinary differential equations is adequate for understanding the average behavior of cells, while the discrete stochastic approach accurately captures noisy events in the growth-division cycle. Since the emergence of the stochastic simulation algorithm (SSA) by Gillespie, alternative algorithms have been developed whose goal is to improve the computational efficiency of the SSA. This paper explains and empirically compares the performance of some of these SSA alternatives on a realistic… More >

  • Open Access

    ARTICLE

    An Efficient Parallel MLPG Method for Poroelastic Models

    Luca Bergamaschi1,2, ,Ángeles Martínez2, Giorgio Pini2

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.3, pp. 191-216, 2009, DOI:10.3970/cmes.2009.049.191

    Abstract A meshless model, based on the Meshless Local Petrov-Galerkin (MLPG) approach, is developed and implemented in parallel for the solution of axi-symmetric poroelastic problems. The parallel code is based on a concurrent construction of the stiffness matrix by the processors and on a parallel preconditioned iterative method of Krylov type for the solution of the resulting linear system. The performance of the code is investigated on a realistic application concerning the prediction of land subsidence above a deep compacting reservoir. The overall code is shown to obtain a very high parallel efficiency (larger than 78% for the solution phase) and… More >

  • Open Access

    ARTICLE

    Shared Memory OpenMP Parallelization of Explicit MPM and Its Application to Hypervelocity Impact

    P. Huang1,2, X. Zhang1,3, S. Ma1, H.K. Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.38, No.2, pp. 119-148, 2008, DOI:10.3970/cmes.2008.038.119

    Abstract The material point method (MPM) is an extension of particle-in-cell method to solid mechanics. A parallel MPM code is developed using FORTRAN 95 and OpenMP in this study, which is designed primarily for solving impact dynamic problems. Two parallel methods, the array expansion method and the domain decomposition method, are presented to avoid data races in the nodal update stage. In the array expansion method, two-dimensional auxiliary arrays are created for nodal variables. After updating grid nodes in all threads, the auxiliary arrays are assembled to establish the global nodal array. In the domain decomposition method, the background grid is… More >

  • Open Access

    ARTICLE

    Fast Parallel Finite Element Approximate Inverses

    G.A. Gravvanis, K.M. Giannoutakis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.1, pp. 35-44, 2008, DOI:10.3970/cmes.2008.032.035

    Abstract A new parallel normalized optimized approximate inverse algorithm, based on the concept of the ``fish bone'' computational approach with cyclic distribution of the processors satisfying an antidiagonal data dependency, for computing classes of explicit approximate inverses, is introduced for symmetric multiprocessor systems. The parallel normalized explicit approximate inverses are used in conjunction with parallel normalized explicit preconditioned conjugate gradient square schemes, for the efficient solution of finite element sparse linear systems. The parallel design and implementation issues of the new proposed algorithms are discussed and the parallel performance is presented, using OpenMP. More >

  • Open Access

    ARTICLE

    Large-Scale Parallel Finite Element Analyses of High Frequency Electromagnetic Field in Commuter Trains

    A. Takei1, S. Yoshimura1, H. Kanayama2

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.1, pp. 13-24, 2008, DOI:10.3970/cmes.2008.031.013

    Abstract This paper presents large-scale finite element analyses of high frequency electromagnetic fields in commuter trains. The ADVENTURE_Magnetic is one of the main modules of the ADVENTURE system, which is an open source parallel finite element analyses system, and is able to solve eddy current and magnetostatic problems using the hierarchical domain decomposition method (HDDM) with an iterative linear algebraic solver. In this paper, we improve the module so as to solve a high frequency electromagnetic field of 500-1000 M[Hz]. A stationary Helmholtz equation for electromagnetic wave problems is solved taking an electric field as an unknown function. In this study,… More >

Displaying 151-160 on page 16 of 178. Per Page