Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    ENHANCEMENT OF SOLAR POND EFFECTIVENESS THROUGH ADDITION OF PCM TO LOW CONVECTIVE ZONE

    N. Poyyamozhia,* , A. Karthikeyanb

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-6, 2022, DOI:10.5098/hmt.18.13

    Abstract This research focuses on the development of solar ponds for efficient storage of solar energy. The influence of phase change material in the solar storage capability of solar ponds has been studied in the present wok. A comparison in the temperature fluctuations of a typical solar pond is made with its counterpart provided with phase change material. Readings have been taken during the sunshine hours in a day, and extended to seventy-five days. The solar pond exhibited identical fluctuations in average temperature irrespective of the presence of phase change material. The results revealed that during… More >

  • Open Access

    ARTICLE

    Water Repellency of Cellulosic Fibrous Mats Impregnated with Organic Solutions Based on Recycled Polystyrene

    Dafni Foti1, Costas Passialis1, Elias Voulgaridis1, Stergios Adamopoulos2,*

    Journal of Renewable Materials, Vol.9, No.1, pp. 85-96, 2021, DOI:10.32604/jrm.2021.011868 - 30 November 2020

    Abstract Recycled polystyrene in combination with paraffin wax, alkyd resin, and gum rosin were used as components in formulations to investigate their water repellency when applied to cellulosic filter paper substrates. Polystyrene was used in concentration of 5, 10, 15 and 20%, alkyd resin and gum rosin of 5% each and paraffin wax of 0.5%. Totally, twenty four water repellent solutions were prepared. Water repellency was evaluated in terms of water absorption of the cellulosic fibrous mats. The relations between retention of solid substances of the formulations and grammage and water absorption of filter paper samples… More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE ENHANCEMENT OF PARAFFIN WAX WITH AL2O3 AND CuO NANOPARTICLES – A NUMERICAL STUDY

    A. Valan Arasua,*, Agus P. Sasmitob,†, Arun S. Mujumdarb

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-7, 2011, DOI:10.5098/hmt.v2.4.3005

    Abstract The heat transfer enhancement of paraffin wax, a cheap and widely used latent heat thermal energy storage material, using nanoparticles is investigated. The effects of nanoparticle volume fraction on both the melting and solidification rates of paraffin wax are analysed and compared for Al2O3 and CuO nanoparticles. Present results show that dispersing nanoparticles in smaller volumetric fractions increase the heat transfer rate. The enhancement in thermal performance of paraffin wax is greater for Al2O3 compared with that for CuO nanoparticles. More >

Displaying 1-10 on page 1 of 3. Per Page