Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    PROCEEDINGS

    Analysis of Aeroacousticelastic Response for Cavity-Plate System Undergoing Supersonic Flow

    Yifei Li1, Ruisen Yang1, Dan Xie1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013359

    Abstract Cavity closed with a thin plate is a common structure in aircrafts, such as landing gear compartments and skin skeletons. The plate undergoing aerodynamic pressure on top is generally vibrating in the amplitude of thickness, which will induce an acoustic pressure in the cavity underneath and it will further affect the panel response. Considering both aerodynamic and acoustic pressure on the panel, there will be an interest to investigate the aero-acoustic-structure coupling mechanism and the aeroacoustoelastic response of the plate. Von Karman plate theory, piston theory and two-dimensional partial differential acoustic equation are employed for… More >

  • Open Access

    PROCEEDINGS

    Post-Buckling and Panel Flutter of Pre-Heated Functionally Graded Plates

    Wei Xia1,2,*, Weilin Kong1, Yupeng Feng1, Shengping Shen1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-2, 2022, DOI:10.32604/icces.2022.08765

    Abstract Post-buckling and panel flutter behaviors of ceramic-metal FGM plates are studied for the skins of supersonic aircrafts. The effects of asymmetric material and temperature distributions, as well as the aerodynamic loads, on the thermo-mechanical response of FGM plates are discussed using finite element simulations. The aero-thermo-elastic model is established by using the simple power law material distribution, the rule of mixture for material effective properties, the nonlinear Fourier equations of heat conduction, von-Karman strain-displacement nonlinear relations, and the piston theory for supersonic aerodynamics. The finite element equations are established using the first-order shear deformable plate… More >

  • Open Access

    ABSTRACT

    The Influence of Initial Deflection on Nonlinear Flutter Response of Functionally Graded Plates

    Wei Xia1,2,*, Kun Wang1, Haitao Yang1, Shengping Shen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.2, pp. 27-27, 2019, DOI:10.32604/icces.2019.05197

    Abstract Panel flutter arises from the aeroelastic instability of the skin structures on the high-speed vehicles, usually in supersonic regime and combined with thermal environment. Unlike the catastrophic flutter of the wings, panel flutter tends to be treated as non-catastrophic one. The nonlinear panel flutter response is of great interest to find the fatigue loading spectra. Present work introduces an aeroelastic model for a thermal isolating panel made from functionally graded materials (FGMs). The Mindlin plate theory is employed to establish the structural equations, the first-order piston theory is adopted for the supersonic aerodynamic loads, and… More >

  • Open Access

    ARTICLE

    Nonlinear Panel Flutter Analysis Based on an Improved CFD/CSD Coupled Procedure

    Xiaomin An1, Min Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.6, pp. 601-629, 2014, DOI:10.3970/cmes.2014.098.601

    Abstract Nonlinear aeroelasticity, caused by the interaction between nonlinear fluid and geometrically nonlinear structure, is studied by an improved CFD and CSD coupled program. An AUSMpw+ flux splitting scheme, combined with an implicit time marching technology and geometric conservation law, is utilized to solve unsteady aerodynamic pressure; The finite element co-rotational theory is applied to model geometrically nonlinear two-dimensional and three-dimensional panels, and a predictor-corrector program with an approximately energy conservation is developed to obtain nonlinear structure response. The two solvers are connected by Farhat’s second order loosely coupled method and the aerodynamic loads and structural More >

  • Open Access

    ARTICLE

    A Simple Proper Orthogonal Decomposition Method for von Karman Plate undergoing Supersonic Flow

    Dan Xie1, Min Xu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.5, pp. 377-409, 2013, DOI:10.3970/cmes.2013.093.377

    Abstract We apply a simple proper orthogonal decomposition (POD) method to compute the nonlinear oscillations of a degenerate two-dimensional fluttering plate undergoing supersonic flow. First, the von Karman’s large deflection theory and quasi-steady aerodynamic theory are employed in constructing the governing equations of the simply supported plate. Then, the governing equations are solved by both the Galerkin method and the POD method. The Galerkin method is accurate but sometimes computationally expensive, since the number of degrees of freedom (dofs) required is relatively large provided that nonlinearity is strong. The POD method can be used to capture… More >

Displaying 1-10 on page 1 of 5. Per Page