Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    Investigation of the Film Formation in Dynamic Air Spray Painting

    Deqing Han, Yong Zeng*, Jintong Gu, Bin Yan

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2393-2415, 2024, DOI:10.32604/fdmp.2024.053114 - 23 September 2024

    Abstract To accurately predict the film thickness distribution during dynamic spraying performed with air guns and support accordingly the development of intelligent spray painting, the spray problem was analyzed numerically. In particular, the Eulerian-Eulerian approach was employed to calculate the paint atomization and film deposition process. Different spray heights, spray angles, spray gun movement speeds, spray trajectory curvature radii, and air pressure values were considered. Numerical simulation results indicate that the angle of spray painting significantly affects the velocity of droplets near the spray surface. With an increase in the spraying angle, spraying height and spray… More >

  • Open Access

    ARTICLE

    Spatial and Contextual Path Network for Image Inpainting

    Dengyong Zhang1,2, Yuting Zhao1,2, Feng Li1,2, Arun Kumar Sangaiah3,4,*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 115-133, 2024, DOI:10.32604/iasc.2024.040847 - 21 May 2024

    Abstract Image inpainting is a kind of use known area of information technology to repair the loss or damage to the area. Image feature extraction is the core of image restoration. Getting enough space for information and a larger receptive field is very important to realize high-precision image inpainting. However, in the process of feature extraction, it is difficult to meet the two requirements of obtaining sufficient spatial information and large receptive fields at the same time. In order to obtain more spatial information and a larger receptive field at the same time, we put forward… More >

  • Open Access

    ARTICLE

    Image Inpainting Technique Incorporating Edge Prior and Attention Mechanism

    Jinxian Bai, Yao Fan*, Zhiwei Zhao, Lizhi Zheng

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 999-1025, 2024, DOI:10.32604/cmc.2023.044612 - 30 January 2024

    Abstract Recently, deep learning-based image inpainting methods have made great strides in reconstructing damaged regions. However, these methods often struggle to produce satisfactory results when dealing with missing images with large holes, leading to distortions in the structure and blurring of textures. To address these problems, we combine the advantages of transformers and convolutions to propose an image inpainting method that incorporates edge priors and attention mechanisms. The proposed method aims to improve the results of inpainting large holes in images by enhancing the accuracy of structure restoration and the ability to recover texture details. This… More >

  • Open Access

    ARTICLE

    Multi-Layer Deep Sparse Representation for Biological Slice Image Inpainting

    Haitao Hu1, Hongmei Ma2, Shuli Mei1,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3813-3832, 2023, DOI:10.32604/cmc.2023.041416 - 08 October 2023

    Abstract Biological slices are an effective tool for studying the physiological structure and evolution mechanism of biological systems. However, due to the complexity of preparation technology and the presence of many uncontrollable factors during the preparation processing, leads to problems such as difficulty in preparing slice images and breakage of slice images. Therefore, we proposed a biological slice image small-scale corruption inpainting algorithm with interpretability based on multi-layer deep sparse representation, achieving the high-fidelity reconstruction of slice images. We further discussed the relationship between deep convolutional neural networks and sparse representation, ensuring the high-fidelity characteristic of… More >

  • Open Access

    ARTICLE

    APST-Flow: A Reversible Network-Based Artistic Painting Style Transfer Method

    Meng Wang*, Yixuan Shao, Haipeng Liu

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5229-5254, 2023, DOI:10.32604/cmc.2023.036631 - 29 April 2023

    Abstract In recent years, deep generative models have been successfully applied to perform artistic painting style transfer (APST). The difficulties might lie in the loss of reconstructing spatial details and the inefficiency of model convergence caused by the irreversible en-decoder methodology of the existing models. Aiming to this, this paper proposes a Flow-based architecture with both the en-decoder sharing a reversible network configuration. The proposed APST-Flow can efficiently reduce model uncertainty via a compact analysis-synthesis methodology, thereby the generalization performance and the convergence stability are improved. For the generator, a Flow-based network using Wavelet additive coupling… More >

  • Open Access

    ARTICLE

    Application Progress of Aromatherapy in Perioperative Patients

    Yuezi Liao1,2,*, Xing Liu1,2, Mengqin Zhang1,2, Hao Hua3

    Journal of Intelligent Medicine and Healthcare, Vol.1, No.1, pp. 1-10, 2022, DOI:10.32604/jimh.2022.029848 - 14 June 2022

    Abstract Aromatherapy is a sort of natural therapy for body maintenance using essential oils and vegetable oils extracted from natural plants. It belongs to the category of homeopathy. Aromatherapy combines the dual functions of art and treatment, comprehensively considers the needs of human physiology and psychology, and is widely used in the field of medical care. Aromatherapy is one of the complementary and alternative treatments extensively studied at home and abroad. It has a relieving effect on postoperative pain, sleep disturbance, nausea, vomiting and preoperative anxiety, and is an important intervention in perioperative care. A large… More >

  • Open Access

    ARTICLE

    Image Inpainting Detection Based on High-Pass Filter Attention Network

    Can Xiao1,2, Feng Li1,2,*, Dengyong Zhang1,2, Pu Huang1,2, Xiangling Ding3, Victor S. Sheng4

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1145-1154, 2022, DOI:10.32604/csse.2022.027249 - 09 May 2022

    Abstract Image inpainting based on deep learning has been greatly improved. The original purpose of image inpainting was to repair some broken photos, such as inpainting artifacts. However, it may also be used for malicious operations, such as destroying evidence. Therefore, detection and localization of image inpainting operations are essential. Recent research shows that high-pass filtering full convolutional network (HPFCN) is applied to image inpainting detection and achieves good results. However, those methods did not consider the spatial location and channel information of the feature map. To solve these shortcomings, we introduce the squeezed excitation blocks More >

  • Open Access

    ARTICLE

    Research on the Identification of Hand-Painted and Machine-Printed Thangka Using CBIR

    Chunhua Pan1,*, Yi Cao2, Jinglong Ren3

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1081-1091, 2022, DOI:10.32604/iasc.2022.028763 - 03 May 2022

    Abstract Thangka is a unique painting art form in Tibetan culture. As Thangka was awarded as the first batch of national intangible cultural heritage, it has been brought into focus. Unfortunately, illegal merchants sell fake Thangkas at high prices for profit. Therefore, identifying hand-painted Thangkas from machine-printed fake Thangkas is important for protecting national intangible cultural heritage. The paper uses Content-Based Image Retrieval (CBIR) techniques to analyze the color, shape, texture, and other characteristics of hand-painted and machine- printed Thangka images, in order to identify Thangkas. Based on the database collected and established by this project… More >

  • Open Access

    ARTICLE

    An Efficient Video Inpainting Approach Using Deep Belief Network

    M. Nuthal Srinivasan1,*, M. Chinnadurai2

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 515-529, 2022, DOI:10.32604/csse.2022.023109 - 20 April 2022

    Abstract The video inpainting process helps in several video editing and restoration processes like unwanted object removal, scratch or damage rebuilding, and retargeting. It intends to fill spatio-temporal holes with reasonable content in the video. Inspite of the recent advancements of deep learning for image inpainting, it is challenging to outspread the techniques into the videos owing to the extra time dimensions. In this view, this paper presents an efficient video inpainting approach using beetle antenna search with deep belief network (VIA-BASDBN). The proposed VIA-BASDBN technique initially converts the videos into a set of frames and… More >

  • Open Access

    ARTICLE

    Spectral Matching Classification Method of Multi-State Similar Pigments Based on Feature Differences

    Meng Da1, Huiqin Wang1,*, Ke Wang1, Zhan Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 513-527, 2022, DOI:10.32604/cmes.2022.019040 - 24 January 2022

    Abstract The properties of the same pigments in murals are affected by different concentrations and particle diameters, which cause the shape of the spectral reflectance data curve to vary, thus influencing the outcome of matching calculations. This paper proposes a spectral matching classification method of multi-state similar pigments based on feature differences. Fast principal component analysis (FPCA) was used to calculate the eigenvalue variance of pigment spectral reflectance, then applied to the original reflectance values for parameter characterization. We first projected the original spectral reflectance from the spectral space to the characteristic variance space to identify… More >

Displaying 1-10 on page 1 of 34. Per Page