Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Bio-Nanocomposites Based on Polyvinyl Alcohol and Fuller Earth Nanoclay: Preparation, Properties and Its Application in Food Packaging

    Yvonne Achieng Ouma1, Supriti Sundari Nayak1, Smrutirekha Mishra2, Harekrishna Panigrahi1,*

    Journal of Polymer Materials, Vol.41, No.4, pp. 281-297, 2024, DOI:10.32604/jpm.2024.056470 - 16 December 2024

    Abstract Fuller earth (FE) nanoclay is a naturally occurring mineral with a high surface area, is highly abundant, and has a low purchasing cost, making it an excellent candidate for nanocomposite production. The study highlights the novelty of using FE nanoclay in combination with polyvinyl alcohol (PVA) to create a bio-nanocomposite that meets the need for sustainable packaging solutions, underscoring its potential to reduce environmental impact while maintaining product quality in food packaging applications. The solvent casting process, a reliable way to evenly disperse nanofillers in polymer matrices, has been employed in this work to incorporate… More >

  • Open Access

    REVIEW

    Cellulose-Based Films for Food Packaging Applications: Review of Preparation, Properties, and Prospects

    Xiaoyan Liu1,2, Zhao Qin1,2,*, Yuxiang Ma1,2, Huamin Liu1,2,*, Xuede Wang1,2

    Journal of Renewable Materials, Vol.11, No.8, pp. 3203-3225, 2023, DOI:10.32604/jrm.2023.027613 - 26 June 2023

    Abstract Packaging is a food preservation technology widely used in the world. Naturally-sourced, biodegradable polymers are becoming increasingly popular in the food packaging sector. Packaging films prepared using cellulose as raw material would contribute to resource sustainability, but the difficulty of cellulose solubilization limits their further development. In view of this, a series of novel solvent systems (LiCl/DMAc, ILs, TBAH/DMSO, NMMO, alkali/urea solutions, metal-complex solutions) were used to prepare high-strength and high-performance cellulose-based films; their characteristics and the mechanisms involved were investigated. Composite films prepared by blending cellulose with various polymers (synthetic polymers, natural polymers, proteins More > Graphic Abstract

    Cellulose-Based Films for Food Packaging Applications: Review of Preparation, Properties, and Prospects

  • Open Access

    ARTICLE

    Melt Extrusion of Environmentally Friendly Poly(L-lactic acid)/Sodium Metabisulfite Films for Antimicrobial Packaging Applications

    Norma M. P. Machado1, Gustavo C. Melo1, Matheus F. Camargo1, Giulianna G. Feijó1, Bruna M. S. Putton2, Clarice Steffens2, Rogerio L. Cansian2, Luiz A. Pessan1, Francys K. V. Moreira1,*

    Journal of Renewable Materials, Vol.9, No.2, pp. 337-349, 2021, DOI:10.32604/jrm.2021.011081 - 15 December 2020

    Abstract Food packaging materials compounded with antimicrobial additives can substantially diminish the incidence of foodborne diseases. Here, poly(L-lactic acid) (PLA) films containing sodium metabisulfite (NaM) were produced by melt extrusion as an attempt to develop a new biodegradable material with antimicrobial properties for packaging. Life cycle assessment (LCA) simulations revealed that the environmental footprints of the PLA film did not change upon NaM addition, and that NaM is more eco-friendly than silver nanoparticles. The PLA/NaM films with NaM content varying from 0.5 to 5.0 wt.% were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and… More >

  • Open Access

    ARTICLE

    PLA Nanocomposites Reinforced with Cellulose Nanocrystals from Posidonia oceanica and ZnO Nanoparticles for Packaging Application

    F. Luzi1, E. Fortunati1*, A. Jiménez2, D. Puglia1, A. Chiralt2, L. Torre1

    Journal of Renewable Materials, Vol.5, No.2, pp. 103-115, 2017, DOI:10.7569/JRM.2016.634135

    Abstract Poly(lactic acid) (PLA) based nanocomposites reinforced with 1 wt% of surfactant-modified cellulose nanocrystals (s-CNC) extracted from Posidonia oceanica plant waste and zinc oxide nanoparticles (ZnO NPs) at different concentrations (0.1 and 0.5 wt%) were prepared by solvent casting process. Their thermal, morphological, optical, mechanical and water vapor permeability properties were investigated. Tensile testing showed increased values for strength and deformation at break in PLA based formulations reinforced with s-CNC and ZnO NPs as a consequence of better nanofiller dispersion compared to binary films reinforced only with ZnO NPs. Moreover, the effect of s-CNC and ZnO More >

  • Open Access

    ARTICLE

    Hydroxytyrosol as Active Ingredient in Poly(vinyl alcohol) Films for Food Packaging Applications

    Elena Fortunati1*, Francesca Luzi1, Chiara Fanali2, Laura Dugo2, Maria Giovanna Belluomo2, Luigi Torre1, José Maria Kenny1, Luca Santi3, Roberta Bernini3

    Journal of Renewable Materials, Vol.5, No.2, pp. 81-95, 2017, DOI:10.7569/JRM.2016.634132

    Abstract Hydroxytyrosol (HTyr), a biophenol found in extra-virgin olive oil or olive oil by-products, well known for its strong antioxidant activity, was used as active ingredient for poly(vinyl alcohol) (PVA) matrix to develop film formulations by solvent casting process. The effect of HTyr on the morphological, thermal stability, optical, mechanical and release properties of PVA were investigated, while water absorption capacity, migration with food stimulants, water vapor permeability and antioxidant properties were tested taking into account the final application as food packaging systems. Morphological investigations evidenced homogeneity of all PVA/HTyr films, while the presence of HTyr More >

Displaying 1-10 on page 1 of 5. Per Page