Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    A Restricted SIR Model with Vaccination Effect for the Epidemic Outbreaks Concerning COVID-19

    Ibtehal Alazman1, Kholoud Saad Albalawi1, Pranay Goswami2,*, Kuldeep Malik2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2409-2425, 2023, DOI:10.32604/cmes.2023.028674 - 03 August 2023

    Abstract This paper presents a restricted SIR mathematical model to analyze the evolution of a contagious infectious disease outbreak (COVID-19) using available data. The new model focuses on two main concepts: first, it can present multiple waves of the disease, and second, it analyzes how far an infection can be eradicated with the help of vaccination. The stability analysis of the equilibrium points for the suggested model is initially investigated by identifying the matching equilibrium points and examining their stability. The basic reproduction number is calculated, and the positivity of the solutions is established. Numerical simulations More >

  • Open Access

    ARTICLE

    GA-Stacking: A New Stacking-Based Ensemble Learning Method to Forecast the COVID-19 Outbreak

    Walaa N. Ismail1,2,*, Hessah A. Alsalamah3,4, Ebtesam Mohamed2

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3945-3976, 2023, DOI:10.32604/cmc.2023.031194 - 31 October 2022

    Abstract As a result of the increased number of COVID-19 cases, Ensemble Machine Learning (EML) would be an effective tool for combatting this pandemic outbreak. An ensemble of classifiers can improve the performance of single machine learning (ML) classifiers, especially stacking-based ensemble learning. Stacking utilizes heterogeneous-base learners trained in parallel and combines their predictions using a meta-model to determine the final prediction results. However, building an ensemble often causes the model performance to decrease due to the increasing number of learners that are not being properly selected. Therefore, the goal of this paper is to develop… More >

  • Open Access

    ARTICLE

    COVID-19 Outbreak Prediction by Using Machine Learning Algorithms

    Tahir Sher1, Abdul Rehman2, Dongsun Kim2,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1561-1574, 2023, DOI:10.32604/cmc.2023.032020 - 22 September 2022

    Abstract COVID-19 is a contagious disease and its several variants put under stress in all walks of life and economy as well. Early diagnosis of the virus is a crucial task to prevent the spread of the virus as it is a threat to life in the whole world. However, with the advancement of technology, the Internet of Things (IoT) and social IoT (SIoT), the versatile data produced by smart devices helped a lot in overcoming this lethal disease. Data mining is a technique that could be used for extracting useful information from massive data. In… More >

  • Open Access

    REVIEW

    Psychological Impacts of Coronavirus Outbreaks on Adults: A Rapid Evidence Review

    Emily Berger1,*, Negar Jamshidi2, Andrea Reupert1

    International Journal of Mental Health Promotion, Vol.24, No.5, pp. 619-634, 2022, DOI:10.32604/ijmhp.2022.013177 - 27 July 2022

    Abstract A recent rapid review highlighted the negative psychological impacts of quarantining during coronavirus outbreaks on the public. However, to date, there has been no review of the psychological impacts of coronavirus on adults using research from community samples and not restricted to people quarantined during coronavirus. A rapid review was conducted to provide timely evidence about the mental health implications of coronavirus outbreaks on adults and to inform psychological research concerning the current COVID-19 outbreak. Three databases and Google Scholar were searched and a total of 27 studies were identified. Symptoms of anxiety and depression… More >

  • Open Access

    ARTICLE

    An Intelligent Cluster Verification Model Using WSN to Avoid Close Proximity and Control Outbreak of Pandemic in a Massive Crowd

    Naeem Ahmed Nawaz1, Norah Saleh Alghamdi2,*, Hanen Karamti2, Mohammad Ayoub Khan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 327-350, 2022, DOI:10.32604/cmes.2022.020791 - 21 July 2022

    Abstract Assemblage at public places for religious or sports events has become an integral part of our lives. These gatherings pose a challenge at places where fast crowd verification with social distancing (SD) is required, especially during a pandemic. Presently, verification of crowds is carried out in the form of a queue that increases waiting time resulting in congestion, stampede, and the spread of diseases. This article proposes a cluster verification model (CVM) using a wireless sensor network (WSN), single cluster approach (SCA), and split cluster approach (SpCA) to solve the aforementioned problem for pandemic cases.… More >

  • Open Access

    ARTICLE

    COVID19 Outbreak: A Hierarchical Framework for User Sentiment Analysis

    Ahmed F. Ibrahim1, M. Hassaballah2, Abdelmgeid A. Ali3, Yunyoung Nam4,*, Ibrahim A. Ibrahim3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2507-2524, 2022, DOI:10.32604/cmc.2022.018131 - 27 September 2021

    Abstract Social networking sites in the most modernized world are flooded with large data volumes. Extracting the sentiment polarity of important aspects is necessary; as it helps to determine people’s opinions through what they write. The Coronavirus pandemic has invaded the world and been given a mention in the social media on a large scale. In a very short period of time, tweets indicate unpredicted increase of coronavirus. They reflect people’s opinions and thoughts with regard to coronavirus and its impact on society. The research community has been interested in discovering the hidden relationships from short… More >

  • Open Access

    ARTICLE

    Classification and Categorization of COVID-19 Outbreak in Pakistan

    Amber Ayoub1, Kainaat Mahboob1, Abdul Rehman Javed2, Muhammad Rizwan1, Thippa Reddy Gadekallu2, Mustufa Haider Abidi3,*, Mohammed Alkahtani4,5

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 1253-1269, 2021, DOI:10.32604/cmc.2021.015655 - 04 June 2021

    Abstract Coronavirus is a potentially fatal disease that normally occurs in mammals and birds. Generally, in humans, the virus spreads through aerial droplets of any type of fluid secreted from the body of an infected person. Coronavirus is a family of viruses that is more lethal than other unpremeditated viruses. In December 2019, a new variant, i.e., a novel coronavirus (COVID-19) developed in Wuhan province, China. Since January 23, 2020, the number of infected individuals has increased rapidly, affecting the health and economies of many countries, including Pakistan. The objective of this research is to provide More >

  • Open Access

    ARTICLE

    Managing Delivery of Safeguarding Substances as a Mitigation Against Outbreaks of Pandemics

    Said Ali Hassan1, Khalid Alnowibet2,3, Prachi Agrawal4, Ali Wagdy Mohamed5,6,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1161-1181, 2021, DOI:10.32604/cmc.2021.015494 - 22 March 2021

    Abstract The optimum delivery of safeguarding substances is a major part of supply chain management and a crucial issue in the mitigation against the outbreak of pandemics. A problem arises for a decision maker who wants to optimally choose a subset of candidate consumers to maximize the distributed quantities of the needed safeguarding substances within a specific time period. A nonlinear binary mathematical programming model for the problem is formulated. The decision variables are binary ones that represent whether to choose a specific consumer, and design constraints are formulated to keep track of the chosen route.… More >

  • Open Access

    ARTICLE

    Analysis and Forecasting COVID-19 Outbreak in Pakistan Using Decomposition and Ensemble Model

    Xiaoli Qiang1, Muhammad Aamir2,*, Muhammad Naeem2, Shaukat Ali3, Adnan Aslam4, Zehui Shao1

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 841-856, 2021, DOI:10.32604/cmc.2021.012540 - 22 March 2021

    Abstract COVID-19 has caused severe health complications and produced a substantial adverse economic impact around the world. Forecasting the trend of COVID-19 infections could help in executing policies to effectively reduce the number of new cases. In this study, we apply the decomposition and ensemble model to forecast COVID-19 confirmed cases, deaths, and recoveries in Pakistan for the upcoming month until the end of July. For the decomposition of data, the Ensemble Empirical Mode Decomposition (EEMD) technique is applied. EEMD decomposes the data into small components, called Intrinsic Mode Functions (IMFs). For individual IMFs modelling, we… More >

  • Open Access

    ARTICLE

    Time Series Facebook Prophet Model and Python for COVID-19 Outbreak Prediction

    Mashael Khayyat1,*, Kaouther Laabidi2, Nada Almalki1, Maysoon Al-zahrani1

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3781-3793, 2021, DOI:10.32604/cmc.2021.014918 - 01 March 2021

    Abstract COVID-19 comes from a large family of viruses identified in 1965; to date, seven groups have been recorded which have been found to affect humans. In the healthcare industry, there is much evidence that Al or machine learning algorithms can provide effective models that solve problems in order to predict confirmed cases, recovered cases, and deaths. Many researchers and scientists in the field of machine learning are also involved in solving this dilemma, seeking to understand the patterns and characteristics of virus attacks, so scientists may make the right decisions and take specific actions. Furthermore,… More >

Displaying 1-10 on page 1 of 19. Per Page