Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Nonlinear Analysis of Organic Polymer Solar Cells Using Differential Quadrature Technique with Distinct and Unique Shape Function

    Ola Ragb1, Mokhtar Mohamed2, Mohamed S. Matbuly1, Omer Civalek3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2193-2217, 2023, DOI:10.32604/cmes.2023.028992 - 03 August 2023

    Abstract Four numerical schemes are introduced for the analysis of photocurrent transients in organic photovoltaic devices. The mathematical model for organic polymer solar cells contains a nonlinear diffusion–reaction partial differential equation system with electrostatic convection attached to a kinetic ordinary differential equation. To solve the problem, Polynomial-based differential quadrature, Sinc, and Discrete singular convolution are combined with block marching techniques. These schemes are employed to reduce the problem to a nonlinear algebraic system. The iterative quadrature technique is used to solve the reduced problem. The obtained results agreed with the previous exact one and the finite More > Graphic Abstract

    Nonlinear Analysis of Organic Polymer Solar Cells Using Differential Quadrature Technique with Distinct and Unique Shape Function

  • Open Access

    ARTICLE

    DFT and TD-DFT Calculations of Orbital Energies and Photovoltaic Properties of Small Molecule Donor and Acceptor Materials Used in Organic Solar Cells

    Daniel Dodzi Yao Setsoafia1, Kiran Sreedhar Ram1, Hooman Mehdizadeh-Rad1,2, David Ompong1,2, Vinuthaa Murthy1,2, Jai Singh1,2,*

    Journal of Renewable Materials, Vol.10, No.10, pp. 2553-2567, 2022, DOI:10.32604/jrm.2022.020967 - 08 June 2022

    Abstract DFT and TD-DFT calculations of HOMO and LUMO energies and photovoltaic properties are carried out on four selected pentathiophene donor and one IDIC-4F acceptor molecules using B3LYP and PBE0 functionals for the ground state energy calculations and CAM-B3LYP functional for the excited state calculations. The discrepancy between the calculated and experimental energies is reduced by correlating them with a linear fit. The fitted energies of HOMO and LUMO are used to calculate the Voc of an OSC based on these donors and acceptor blend and compared with experimental values. Using the Scharber model the calculated PCE… More >

Displaying 1-10 on page 1 of 2. Per Page