Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    PROCEEDINGS

    Distribution Transport: A High-Efficiency Method for Orbital Uncertainty Propagation

    Changtao Wang1, Honghua Dai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.010943

    Abstract Orbital uncertainty propagation is fundamental in space situational awareness-related missions such as orbit prediction and tracking. Linear models and full nonlinear Monte Carlo simulations were primarily used to propagate uncertainties [1]. However, these methods hampered the application due to low precision and intensive computation. Over the past two decades, numerous nonlinear uncertainty propagators have been proposed. Among these methods, the state transition tensor (STT) method has been widely used due to its controllable accuracy and high efficiency [2]. However, this method has two drawbacks. First, its semi-analytical formulation is too intricate to implement, which hinders… More >

  • Open Access

    ARTICLE

    Orbit Weighting Scheme in the Context of Vector Space Information Retrieval

    Ahmad Ababneh1, Yousef Sanjalawe2, Salam Fraihat3,*, Salam Al-E’mari4, Hamzah Alqudah5

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1347-1379, 2024, DOI:10.32604/cmc.2024.050600 - 18 July 2024

    Abstract This study introduces the Orbit Weighting Scheme (OWS), a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval (IR) models, which have traditionally relied on weighting schemes like tf-idf and BM25. These conventional methods often struggle with accurately capturing document relevance, leading to inefficiencies in both retrieval performance and index size management. OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space, emphasizing term relationships and distribution patterns overlooked by existing models. Our research focuses on evaluating OWS’s impact… More >

  • Open Access

    ARTICLE

    An Adaptive Parallel Feedback-Accelerated Picard Iteration Method for Simulating Orbit Propagation

    Changtao Wang, Honghua Dai*, Wenchuan Yang

    Digital Engineering and Digital Twin, Vol.1, pp. 3-13, 2023, DOI:10.32604/dedt.2023.044210 - 28 December 2023

    Abstract A novel Adaptive Parallel Feedback-Accelerated Picard Iteration (AP-FAPI) method is proposed to meet the requirements of various aerospace missions for fast and accurate orbit propagation. The Parallel Feedback-Accelerated Picard Iteration (P-FAPI) method is an advanced iterative collocation method. With large-step computing and parallel acceleration, the P-FAPI method outperforms the traditional finite-difference-based methods, which require small-step and serial integration to ensure accuracy. Although efficient and accurate, the P-FAPI method suffers extensive trials in tuning method parameters, strongly influencing its performance. To overcome this problem, we propose the AP-FAPI method based on the relationship between the parameters More >

  • Open Access

    PROCEEDINGS

    Collocation-Based Reconstruction Harmonic Balance Method for Solving Periodic Orbits of Aerospace Vehicles

    Zipu Yan1,2, Honghua Dai1,2,*, Xiaokui Yue1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09138

    Abstract As a significant research interest in orbital mechanics, periodic orbits are fundamental for understanding orbital behaviors and space explorations. Although the harmonic balance (HB) method and its variants have been the most widely-used approaches for periodic dynamical systems, they are seldom applied to celestial dynamics. Here we use the reconstruction harmonic balance (RHB) method for solving periodic orbits. Starting from a presupposed Fourier form and an initial guess at the solution, the algorithm uses timedomain collocation points to optimally reconstruct the high-order HB procedure without complicated symbolic operations and non-physical solutions. Following a description of More >

  • Open Access

    ARTICLE

    Role of Calcination Temperature on Isosorbide Production from Sorbitol Dehydration over the Catalyst Derived from Ce(IV) Sulfate

    Medta Boupan1,2, Kanyapak Prompang1, Achiraya Chompunuch1, Piwat Boonma1, Arthit Neramittagapong1,2,3,4, Somnuk Theerakulpisut5, Sutasinee Neramittagapong1,2,3,*

    Journal of Renewable Materials, Vol.11, No.7, pp. 2985-3000, 2023, DOI:10.32604/jrm.2023.026397 - 05 June 2023

    Abstract Isosorbide is a multi-purpose chemical that can be produced from renewable resources. Specifically, it has been investigated as a replacement for toxic bisphenol A (BPA) in the production of polycarbonate (PC). In this study, the synthesis of isosorbide by sorbitol dehydration using a cerium-based catalyst derived from calcined cerium (IV) sulfate (300°C, 400°C, 450°C, 500°C, and 650°C) was investigated. The reaction occurred in a high-pressure reactor containing nitrogen gas. Advanced instrumental techniques were applied to analyze the characteristics of the calcined catalyst. The results showed that the calcined catalysts demonstrated different crystalline structures and sulfate More > Graphic Abstract

    Role of Calcination Temperature on Isosorbide Production from Sorbitol Dehydration over the Catalyst Derived from Ce(IV) Sulfate

  • Open Access

    REVIEW

    Low Altitude Satellite Constellation for Futuristic Aerial-Ground Communications

    Saifur Rahman Sabuj1, Mohammad Saadman Alam2, Majumder Haider2, Md Akbar Hossain3, Al-Sakib Khan Pathan4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1053-1089, 2023, DOI:10.32604/cmes.2023.024078 - 06 February 2023

    Abstract This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks. To achieve the generic goals of fifthgeneration and beyond wireless networks, the existing aerial network architecture needs to be revisited. The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper. Moreover, we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage. We talk about the techniques that can ensure userfriendly control and monitoring More > Graphic Abstract

    Low Altitude Satellite Constellation for Futuristic Aerial-Ground Communications

  • Open Access

    ARTICLE

    Improved Beam Steering Method Using OAM Waves

    Nidal Qasem*, Ahmad Alamayreh

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 417-431, 2023, DOI:10.32604/csse.2023.035603 - 20 January 2023

    Abstract Orbital Angular Momentum (OAM) is an intrinsic feature of electromagnetic waves which has recently found many applications in several areas in radio and optics. In this paper, we use OAM wave characteristics to present a simple method for beam steering over both elevation and azimuth planes. The design overcomes some limitations of traditional steering methods, such as limited dynamic range of steering, the design complexity, bulky size of the steering structure, the limited bandwidth of operation, and low gain. Based on OAM wave characteristics, the proposed steering method avoids design complexities by adopting a simple… More >

  • Open Access

    ARTICLE

    Generation of OAM Waves and Analysis of Mode Purity for 5G Sub-6 GHz Applications

    Shehab Khan Noor1, Arif Mawardi Ismail1, Mohd Najib Mohd Yasin1,*, Mohamed Nasrun Osman1, Nurulazlina Ramli2, Ali H. Rambe3, J. Iqbal4,5

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2239-2259, 2023, DOI:10.32604/cmc.2023.031170 - 22 September 2022

    Abstract This article presents the generation of Orbital Angular Momentum (OAM) vortex waves with mode 1 using Uniform Circular Array (UCA) antenna. Two different designs, namely, UCA-1 (4-element array antenna) and UCA-2 (8-element array antenna), were designed and fabricated using FR-4 substrate to generate OAM mode 1 at 3.5 GHz (5G mid-band). The proposed antenna arrays comprised rectangular microstrip patch elements with inset fed technique. The elements were excited by a carefully designed feeding phase shift network to provide similar output energy at output ports with desired phase shift value. The generated OAM waves were confirmed… More >

  • Open Access

    CASE REPORT

    Multiple Recurrence of Primary Orbital Synovial Sarcoma: Report of Two Cases and Literature Review

    Yi Wu, Yujiao Wang, Weimin He*

    Oncologie, Vol.24, No.4, pp. 927-935, 2022, DOI:10.32604/oncologie.2022.026720 - 31 December 2022

    Abstract Synovial sarcoma (SS) is typically an aggressive malignant soft tissue tumor that mostly affects adolescents and young adults. It is extremely rare in orbit and carries a high risk of recurrence and metastasis, posing a challenge to ophthalmologists in diagnosing and managing. We present two primary orbital synovial sarcoma cases with unilateral exophthalmos and limited motility. Both male patients underwent reoperation in our hospital since tumor recurrence; the pathologic diagnoses were biphasic type and occult type, respectively. Both cases were positive for EMA and CK, and SOX-9 and INI-1 were newly discovered immune markers. Fluorescence in More >

  • Open Access

    ARTICLE

    DFT and TD-DFT Calculations of Orbital Energies and Photovoltaic Properties of Small Molecule Donor and Acceptor Materials Used in Organic Solar Cells

    Daniel Dodzi Yao Setsoafia1, Kiran Sreedhar Ram1, Hooman Mehdizadeh-Rad1,2, David Ompong1,2, Vinuthaa Murthy1,2, Jai Singh1,2,*

    Journal of Renewable Materials, Vol.10, No.10, pp. 2553-2567, 2022, DOI:10.32604/jrm.2022.020967 - 08 June 2022

    Abstract DFT and TD-DFT calculations of HOMO and LUMO energies and photovoltaic properties are carried out on four selected pentathiophene donor and one IDIC-4F acceptor molecules using B3LYP and PBE0 functionals for the ground state energy calculations and CAM-B3LYP functional for the excited state calculations. The discrepancy between the calculated and experimental energies is reduced by correlating them with a linear fit. The fitted energies of HOMO and LUMO are used to calculate the Voc of an OSC based on these donors and acceptor blend and compared with experimental values. Using the Scharber model the calculated PCE… More >

Displaying 1-10 on page 1 of 32. Per Page