Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (362)
  • Open Access

    ARTICLE

    Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control

    Xin Mao*, Hongsheng Su, Jingxiu Li

    Energy Engineering, Vol.121, No.12, pp. 3929-3951, 2024, DOI:10.32604/ee.2024.057106 - 22 November 2024

    Abstract The virtual synchronous generator (VSG) technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources. However, the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response. In light of the issues above, a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control (ILADRC) is put forth for consideration. Firstly, an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop; then, the… More >

  • Open Access

    ARTICLE

    Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb & Observe under Partial Shading Conditions

    Zhaoqiang Wang1, Fuyin Ni2,*

    Energy Engineering, Vol.121, No.12, pp. 3779-3799, 2024, DOI:10.32604/ee.2024.055535 - 22 November 2024

    Abstract Under the partial shading conditions (PSC) of Photovoltaic (PV) modules in a PV hybrid system, the power output curve exhibits multiple peaks. This often causes traditional maximum power point tracking (MPPT) methods to fall into local optima and fail to find the global optimum. To address this issue, a composite MPPT algorithm is proposed. It combines the improved kepler optimization algorithm (IKOA) with the optimized variable-step perturb and observe (OIP&O). The update probabilities, planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized. This adaptation meets the varying needs of the initial… More > Graphic Abstract

    Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb & Observe under Partial Shading Conditions

  • Open Access

    ARTICLE

    Adaptive Video Dual Domain Watermarking Scheme Based on PHT Moment and Optimized Spread Transform Dither Modulation

    Yucheng Liang1,2,*, Ke Niu1,2,*, Yingnan Zhang1,2, Yifei Meng1,2, Fangmeng Hu1,2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2457-2492, 2024, DOI:10.32604/cmc.2024.056438 - 18 November 2024

    Abstract To address the challenges of video copyright protection and ensure the perfect recovery of original video, we propose a dual-domain watermarking scheme for digital video, inspired by Robust Reversible Watermarking (RRW) technology used in digital images. Our approach introduces a parameter optimization strategy that incrementally adjusts scheme parameters through attack simulation fitting, allowing for adaptive tuning of experimental parameters. In this scheme, the low-frequency Polar Harmonic Transform (PHT) moment is utilized as the embedding domain for robust watermarking, enhancing stability against simulation attacks while implementing the parameter optimization strategy. Through extensive attack simulations across various… More >

  • Open Access

    ARTICLE

    Enhanced Growth Optimizer and Its Application to Multispectral Image Fusion

    Jeng-Shyang Pan1,2, Wenda Li1, Shu-Chuan Chu1,*, Xiao Sui1, Junzo Watada3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3033-3062, 2024, DOI:10.32604/cmc.2024.056310 - 18 November 2024

    Abstract The growth optimizer (GO) is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environment. However, the original GO algorithm is constrained by two significant limitations: slow convergence and high memory requirements. This restricts its application to large-scale and complex problems. To address these problems, this paper proposes an innovative enhanced growth optimizer (eGO). In contrast to conventional population-based optimization algorithms, the eGO algorithm utilizes a probabilistic model, designated as the virtual population, which is capable of accurately replicating the… More >

  • Open Access

    ARTICLE

    Using Multi-Omics Analysis to Explore Diagnostic Tool and Optimize Drug Therapy Selection for Patients with Glioma Based on Cross-Talk Gene Signature

    YUSHI YANG1,#, CHUJIAO HU2,#, SHAN LEI3, XIN BAO3, ZHIRUI ZENG3,*, WENPENG CAO4,*

    Oncology Research, Vol.32, No.12, pp. 1921-1934, 2024, DOI:10.32604/or.2024.046191 - 13 November 2024

    Abstract Background: The heterogeneity of prognosis and treatment benefits among patients with gliomas is due to tumor microenvironment characteristics. However, biomarkers that reflect microenvironmental characteristics and predict the prognosis of gliomas are limited. Therefore, we aimed to develop a model that can effectively predict prognosis, differentiate microenvironment signatures, and optimize drug selection for patients with glioma. Materials and Methods: The CIBERSORT algorithm, bulk sequencing analysis, and single-cell RNA (scRNA) analysis were employed to identify significant cross-talk genes between M2 macrophages and cancer cells in glioma tissues. A predictive model was constructed based on cross-talk gene expression, and… More >

  • Open Access

    PROCEEDINGS

    A Coupled Thermo-Mechanical Finite Element Method with Optimized Explicit Time Integration for Welding Distortion and Stress Analysis

    Hui Huang1,*, Yongbing Li1, Shuhui Li1, Ninshu Ma2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011348

    Abstract The sequentially coupled thermo-mechanical finite element analysis (FEA) with implicit iteration scheme is widely adopted for welding process simulation because the one-way coupling scheme is believed to be more efficient. However, such computational framework faces the bottleneck of scalability in large-scale analysis due to the exponential growth of computational burden with respect to the number of unknowns in a FEA model. In the present study, a fully coupled approach with explicit integration was developed to simulate fusion welding induced temperature, distortion, and residual stresses. A mass scaling and heat capacity inverse scaling technique was proposed More >

  • Open Access

    ARTICLE

    Densely Convolutional BU-NET Framework for Breast Multi-Organ Cancer Nuclei Segmentation through Histopathological Slides and Classification Using Optimized Features

    Amjad Rehman1, Muhammad Mujahid1, Robertas Damasevicius2,*, Faten S Alamri3, Tanzila Saba1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2375-2397, 2024, DOI:10.32604/cmes.2024.056937 - 31 October 2024

    Abstract This study aims to develop a computational pathology approach that can properly detect and distinguish histology nuclei. This is crucial for histopathological image analysis, as it involves segmenting cell nuclei. However, challenges exist, such as determining the boundary region of normal and deformed nuclei and identifying small, irregular nuclei structures. Deep learning approaches are currently dominant in digital pathology for nucleus recognition and classification, but their complex features limit their practical use in clinical settings. The existing studies have limited accuracy, significant processing costs, and a lack of resilience and generalizability across diverse datasets. We… More >

  • Open Access

    ARTICLE

    A Genetic Algorithm-Based Optimized Transfer Learning Approach for Breast Cancer Diagnosis

    Hussain AlSalman1, Taha Alfakih2, Mabrook Al-Rakhami2, Mohammad Mehedi Hassan2,*, Amerah Alabrah2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2575-2608, 2024, DOI:10.32604/cmes.2024.055011 - 31 October 2024

    Abstract Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics, integral for early detection and effective treatment. While deep learning has significantly advanced the analysis of mammographic images, challenges such as low contrast, image noise, and the high dimensionality of features often degrade model performance. Addressing these challenges, our study introduces a novel method integrating Genetic Algorithms (GA) with pre-trained Convolutional Neural Network (CNN) models to enhance feature selection and classification accuracy. Our approach involves a systematic process: first, we employ widely-used CNN architectures (VGG16, VGG19, MobileNet, and DenseNet) to extract a… More >

  • Open Access

    ARTICLE

    Optimized Operation of Park Integrated Energy System with Source-Load Flexible Response Based on Comprehensive Evaluation Index

    Xinglong Chen, Ximin Cao*, Qifan Huang, He Huang

    Energy Engineering, Vol.121, No.11, pp. 3437-3460, 2024, DOI:10.32604/ee.2024.053464 - 21 October 2024

    Abstract To better reduce the carbon emissions of a park-integrated energy system (PIES), optimize the comprehensive operating cost, and smooth the load curve, a source-load flexible response model based on the comprehensive evaluation index is proposed. Firstly, a source-load flexible response model is proposed under the stepped carbon trading mechanism; the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power (CHP) unit and electric boiler to realize the flexible response of CHP to load; and the load-side categorizes loads into transferable, interruptible, and substitutable loads… More >

  • Open Access

    ARTICLE

    African Bison Optimization Algorithm: A New Bio-Inspired Optimizer with Engineering Applications

    Jian Zhao1,2,*, Kang Wang1,2, Jiacun Wang3,*, Xiwang Guo4, Liang Qi5

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 603-623, 2024, DOI:10.32604/cmc.2024.050523 - 15 October 2024

    Abstract This paper introduces the African Bison Optimization (ABO) algorithm, which is based on biological population. ABO is inspired by the survival behaviors of the African bison, including foraging, bathing, jousting, mating, and eliminating. The foraging behavior prompts the bison to seek a richer food source for survival. When bison find a food source, they stick around for a while by bathing behavior. The jousting behavior makes bison stand out in the population, then the winner gets the chance to produce offspring in the mating behavior. The eliminating behavior causes the old or injured bison to More >

Displaying 1-10 on page 1 of 362. Per Page