Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    REVIEW

    Review of Metaheuristic Optimization Techniques for Enhancing E-Health Applications

    Qun Song1, Chao Gao1, Han Wu1, Zhiheng Rao1, Huafeng Qin1,*, Simon Fong1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-49, 2026, DOI:10.32604/cmc.2025.070918 - 09 December 2025

    Abstract Metaheuristic algorithms, renowned for strong global search capabilities, are effective tools for solving complex optimization problems and show substantial potential in e-Health applications. This review provides a systematic overview of recent advancements in metaheuristic algorithms and highlights their applications in e-Health. We selected representative algorithms published between 2019 and 2024, and quantified their influence using an entropy-weighted method based on journal impact factors and citation counts. CThe Harris Hawks Optimizer (HHO) demonstrated the highest early citation impact. The study also examined applications in disease prediction models, clinical decision support, and intelligent health monitoring. Notably, the More >

  • Open Access

    REVIEW

    A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks

    Kinzah Noor1, Agbotiname Lucky Imoize2,*, Michael Adedosu Adelabu3, Cheng-Chi Lee4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1575-1664, 2025, DOI:10.32604/cmes.2025.073200 - 26 November 2025

    Abstract The envisioned 6G wireless networks demand advanced Multiple Access (MA) schemes capable of supporting ultra-low latency, massive connectivity, high spectral efficiency, and energy efficiency (EE), especially as the current 5G networks have not achieved the promised 5G goals, including the projected 2000 times EE improvement over the legacy 4G Long Term Evolution (LTE) networks. This paper provides a comprehensive survey of Artificial Intelligence (AI)-enabled MA techniques, emphasizing their roles in Spectrum Sensing (SS), Dynamic Resource Allocation (DRA), user scheduling, interference mitigation, and protocol adaptation. In particular, we systematically analyze the progression of traditional and modern… More > Graphic Abstract

    A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks

  • Open Access

    ARTICLE

    Predicting Concrete Strength Using Data Augmentation Coupled with Multiple Optimizers in Feedforward Neural Networks

    Sandeerah Choudhary1, Qaisar Abbas2, Tallha Akram3,*, Irshad Qureshi4, Mutlaq B. Aldajani2, Hammad Salahuddin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1755-1787, 2025, DOI:10.32604/cmes.2025.072200 - 26 November 2025

    Abstract The increasing demand for sustainable construction practices has led to growing interest in recycled aggregate concrete (RAC) as an eco-friendly alternative to conventional concrete. However, predicting its compressive strength remains a challenge due to the variability in recycled materials and mix design parameters. This study presents a robust machine learning framework for predicting the compressive strength of recycled aggregate concrete using feedforward neural networks (FFNN), Random Forest (RF), and XGBoost. A literature-derived dataset of 502 samples was enriched via interpolation-based data augmentation and modeled using five distinct optimization techniques within MATLAB’s Neural Net Fitting module:… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Sizing and Allocation of Distributed Power Generation: Optimization Techniques, Global Insights, and Smart Grid Implications

    Abdullrahman A. Al-Shamma’a1, Hassan M. Hussein Farh1,*, Ridwan Taiwo2, Al-Wesabi Ibrahim3, Abdulrhman Alshaabani1, Saad Mekhilef 4, Mohamed A. Mohamed5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1303-1347, 2025, DOI:10.32604/cmes.2025.071302 - 26 November 2025

    Abstract Optimal sizing and allocation of distributed generators (DGs) have become essential computational challenges in improving the performance, efficiency, and reliability of electrical distribution networks. Despite extensive research, existing approaches often face algorithmic limitations such as slow convergence, premature stagnation in local minima, or suboptimal accuracy in determining optimal DG placement and capacity. This study presents a comprehensive scientometric and systematic review of global research focused on computer-based modelling and algorithmic optimization for renewable DG sizing and placement. It integrates both quantitative and qualitative analyses of the scholarly landscape, mapping influential research domains, co-authorship structures, the More >

  • Open Access

    ARTICLE

    An Improved Chicken Swarm Optimization Techniques Based on Cultural Algorithm Operators for Biometric Access Control

    Jonathan Ponmile Oguntoye1, Sunday Adeola Ajagbe2,3,*, Oluyinka Titilayo Adedeji1, Olufemi Olayanju Awodoye1, Abigail Bola Adetunji1, Elijah Olusayo Omidiora1, Matthew Olusegun Adigun2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5713-5732, 2025, DOI:10.32604/cmc.2025.062440 - 30 July 2025

    Abstract This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization (CCSO) technique. This approach mitigates the limitations of conventional Chicken Swarm Optimization (CSO), especially in dealing with larger dimensions due to diversity loss during solution space exploration. Our experimentation involved 600 sample images encompassing facial, iris, and fingerprint data, collected from 200 students at Ladoke Akintola University of Technology (LAUTECH), Ogbomoso. The results demonstrate the remarkable effectiveness of CCSO, yielding accuracy rates of 90.42%, 91.67%, and 91.25% within 54.77, 27.35, and 113.92 s for facial, fingerprint, and iris biometrics,… More >

  • Open Access

    REVIEW

    A Survey of Spark Scheduling Strategy Optimization Techniques and Development Trends

    Chuan Li, Xuanlin Wen*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 3843-3875, 2025, DOI:10.32604/cmc.2025.063047 - 19 May 2025

    Abstract Spark performs excellently in large-scale data-parallel computing and iterative processing. However, with the increase in data size and program complexity, the default scheduling strategy has difficulty meeting the demands of resource utilization and performance optimization. Scheduling strategy optimization, as a key direction for improving Spark’s execution efficiency, has attracted widespread attention. This paper first introduces the basic theories of Spark, compares several default scheduling strategies, and discusses common scheduling performance evaluation indicators and factors affecting scheduling efficiency. Subsequently, existing scheduling optimization schemes are summarized based on three scheduling modes: load characteristics, cluster characteristics, and matching More >

  • Open Access

    ARTICLE

    A Comprehensive Study of Resource Provisioning and Optimization in Edge Computing

    Sreebha Bhaskaran*, Supriya Muthuraman

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5037-5070, 2025, DOI:10.32604/cmc.2025.062657 - 19 May 2025

    Abstract Efficient resource provisioning, allocation, and computation offloading are critical to realizing low-latency, scalable, and energy-efficient applications in cloud, fog, and edge computing. Despite its importance, integrating Software Defined Networks (SDN) for enhancing resource orchestration, task scheduling, and traffic management remains a relatively underexplored area with significant innovation potential. This paper provides a comprehensive review of existing mechanisms, categorizing resource provisioning approaches into static, dynamic, and user-centric models, while examining applications across domains such as IoT, healthcare, and autonomous systems. The survey highlights challenges such as scalability, interoperability, and security in managing dynamic and heterogeneous infrastructures. More >

  • Open Access

    ARTICLE

    Improving Shallow Foundation Settlement Prediction through Intelligent Optimization Techniques

    Hadi Fattahi1, Hossein Ghaedi1, Danial Jahed Armaghani2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 747-766, 2025, DOI:10.32604/cmes.2025.062390 - 11 April 2025

    Abstract In contemporary geotechnical projects, various approaches are employed for forecasting the settlement of shallow foundations (Sm). However, achieving precise modeling of foundation behavior using certain techniques (such as analytical, numerical, and regression) is challenging and sometimes unattainable. This is primarily due to the inherent nonlinearity of the model, the intricate nature of geotechnical materials, the complex interaction between soil and foundation, and the inherent uncertainty in soil parameters. Therefore, these methods often introduce assumptions and simplifications, resulting in relationships that deviate from the actual problem’s reality. In addition, many of these methods demand significant investments of… More >

  • Open Access

    ARTICLE

    Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence

    Ali Hamid Farea1,*, Omar H. Alhazmi1, Kerem Kucuk2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1525-1545, 2024, DOI:10.32604/cmc.2023.045794 - 27 February 2024

    Abstract While emerging technologies such as the Internet of Things (IoT) have many benefits, they also pose considerable security challenges that require innovative solutions, including those based on artificial intelligence (AI), given that these techniques are increasingly being used by malicious actors to compromise IoT systems. Although an ample body of research focusing on conventional AI methods exists, there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures. To contribute to this nascent research stream, a novel AI-driven security system denoted as “AI2AI” is presented in this work.… More >

  • Open Access

    REVIEW

    Economic Power Dispatching from Distributed Generations: Review of Optimization Techniques

    Paramjeet Kaur1, Krishna Teerth Chaturvedi1, Mohan Lal Kolhe2,*

    Energy Engineering, Vol.121, No.3, pp. 557-579, 2024, DOI:10.32604/ee.2024.043159 - 27 February 2024

    Abstract In the increasingly decentralized energy environment, economical power dispatching from distributed generations (DGs) is crucial to minimizing operating costs, optimizing resource utilization, and guaranteeing a consistent and sustainable supply of electricity. A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability. The choice of optimization technique for economic power dispatching from DGs depends on a number of factors, such as the size and complexity of the power system, the availability of computational resources, and… More >

Displaying 1-10 on page 1 of 17. Per Page