Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,207)
  • Open Access

    ARTICLE

    A Time Pattern-Based Intelligent Cache Optimization Policy on Korea Advanced Research Network

    Waleed Akbar, Afaq Muhammad, Wang-Cheol Song*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3743-3759, 2023, DOI:10.32604/iasc.2023.036440

    Abstract Data is growing quickly due to a significant increase in social media applications. Today, billions of people use an enormous amount of data to access the Internet. The backbone network experiences a substantial load as a result of an increase in users. Users in the same region or company frequently ask for similar material, especially on social media platforms. The subsequent request for the same content can be satisfied from the edge if stored in proximity to the user. Applications that require relatively low latency can use Content Delivery Network (CDN) technology to meet their requirements. An edge and the… More >

  • Open Access

    ARTICLE

    Hand Gesture Recognition for Disabled People Using Bayesian Optimization with Transfer Learning

    Fadwa Alrowais1, Radwa Marzouk2,3, Fahd N. Al-Wesabi4,*, Anwer Mustafa Hilal5

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3325-3342, 2023, DOI:10.32604/iasc.2023.036354

    Abstract Sign language recognition can be treated as one of the efficient solutions for disabled people to communicate with others. It helps them to convey the required data by the use of sign language with no issues. The latest developments in computer vision and image processing techniques can be accurately utilized for the sign recognition process by disabled people. American Sign Language (ASL) detection was challenging because of the enhancing intraclass similarity and higher complexity. This article develops a new Bayesian Optimization with Deep Learning-Driven Hand Gesture Recognition Based Sign Language Communication (BODL-HGRSLC) for Disabled People. The BODL-HGRSLC technique aims to… More >

  • Open Access

    ARTICLE

    MNIST Handwritten Digit Classification Based on Convolutional Neural Network with Hyperparameter Optimization

    Haijian Shao1, Edwin Ma2, Ming Zhu1, Xing Deng3, Shengjie Zhai1,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3595-3606, 2023, DOI:10.32604/iasc.2023.036323

    Abstract Accurate handwriting recognition has been a challenging computer vision problem, because static feature analysis of the text pictures is often inadequate to account for high variance in handwriting styles across people and poor image quality of the handwritten text. Recently, by introducing machine learning, especially convolutional neural networks (CNNs), the recognition accuracy of various handwriting patterns is steadily improved. In this paper, a deep CNN model is developed to further improve the recognition rate of the MNIST handwritten digit dataset with a fast-converging rate in training. The proposed model comes with a multi-layer deep arrange structure, including 3 convolution and… More >

  • Open Access

    ARTICLE

    Learning-Related Sentiment Detection, Classification, and Application for a Quality Education Using Artificial Intelligence Techniques

    Samah Alhazmi1,*, Shahnawaz Khan2, Mohammad Haider Syed1

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3487-3499, 2023, DOI:10.32604/iasc.2023.036297

    Abstract Quality education is one of the primary objectives of any nation-building strategy and is one of the seventeen Sustainable Development Goals (SDGs) by the United Nations. To provide quality education, delivering top-quality content is not enough. However, understanding the learners’ emotions during the learning process is equally important. However, most of this research work uses general data accessed from Twitter or other publicly available databases. These databases are generally not an ideal representation of the actual learning process and the learners’ sentiments about the learning process. This research has collected real data from the learners, mainly undergraduate university students of… More >

  • Open Access

    ARTICLE

    Dynamic Allocation of Manufacturing Tasks and Resources in Shared Manufacturing

    Caiyun Liu, Peng Liu*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3221-3242, 2023, DOI:10.32604/iasc.2023.035114

    Abstract Shared manufacturing is recognized as a new point-to-point manufacturing mode in the digital era. Shared manufacturing is referred to as a new manufacturing mode to realize the dynamic allocation of manufacturing tasks and resources. Compared with the traditional mode, shared manufacturing offers more abundant manufacturing resources and flexible configuration options. This paper proposes a model based on the description of the dynamic allocation of tasks and resources in the shared manufacturing environment, and the characteristics of shared manufacturing resource allocation. The execution of manufacturing tasks, in which candidate manufacturing resources enter or exit at various time nodes, enables the dynamic… More >

  • Open Access

    ARTICLE

    Optimal Allocation of STATCOM to Enhance Transient Stability Using Imperialist Competitive Algorithm

    Ayman Amer1, Firas M. Makahleh2, Jafar Ababneh3, Hani Attar4, Ahmed Amin Ahmed Solyman5, Mehrdad Ahmadi Kamarposhti6,*, Phatiphat Thounthong7

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3425-3446, 2023, DOI:10.32604/iasc.2023.034854

    Abstract With the daily expansion of global energy consumption, developing the power grids is of uttermost importance. However, building a new transmission line is costly and time-consuming, so utilizing the same lines with possible higher transmission capacity is very cost-effective. In this regard, to increase the capacity of the transmission lines, the flexible alternating current transmission system (FACTS) has been widely used in power grids in recent years by industrialized countries. One of the essential topics in electrical power systems is the reactive power compensation, and the FACTS plays a significant role in controlling the reactive power current in the power… More >

  • Open Access

    ARTICLE

    Improved Fruitfly Optimization with Stacked Residual Deep Learning Based Email Classification

    Hala J. Alshahrani1, Khaled Tarmissi2, Ayman Yafoz3, Abdullah Mohamed4, Abdelwahed Motwakel5,*, Ishfaq Yaseen5, Amgad Atta Abdelmageed5, Mohammad Mahzari6

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3139-3155, 2023, DOI:10.32604/iasc.2023.034841

    Abstract Applied linguistics means a wide range of actions which include addressing a few language-based problems or solving some language-based concerns. Emails stay in the leading positions for business as well as personal use. This popularity grabs the interest of individuals with malevolent intentions—phishing and spam email assaults. Email filtering mechanisms were developed incessantly to follow unwanted, malicious content advancement to protect the end-users. But prevailing solutions were focused on phishing email filtering and spam and whereas email labelling and analysis were not fully advanced. Thus, this study provides a solution related to email message body text automatic classification into phishing… More >

  • Open Access

    ARTICLE

    An Endogenous Feedback and Entropy Analysis in Machine Learning Model for Stock’s Return Forecast

    Edson Vinicius Pontes Bastos1,*, Jorge Junio Moreira Antunes2, Lino Guimarães Marujo1, Peter Fernandes Wanke2, Roberto Ivo da Rocha Lima Filho1

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3175-3190, 2023, DOI:10.32604/iasc.2023.034582

    Abstract Stock markets exhibit Brownian movement with random, non-linear, uncertain, evolutionary, non-parametric, nebulous, chaotic characteristics and dynamism with a high degree of complexity. Developing an algorithm to predict returns for decision-making is a challenging goal. In addition, the choice of variables that will serve as input to the model represents a non-triviality, since it is possible to observe endogeneity problems between the predictor and the predicted variables. Thus, the goal is to analyze the endogenous origin of the stock return prediction model based on technical indicators. For this, we structure a feed-forward neural network. We evaluate the endogenous feedback between the… More >

  • Open Access

    ARTICLE

    Energy-Efficient Clustering Using Optimization with Locust Game Theory

    P. Kavitha Rani1, Hee-Kwon Chae2, Yunyoung Nam2,*, Mohamed Abouhawwash3,4

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2591-2605, 2023, DOI:10.32604/iasc.2023.033697

    Abstract Wireless sensor networks (WSNs) are made up of several sensors located in a specific area and powered by a finite amount of energy to gather environmental data. WSNs use sensor nodes (SNs) to collect and transmit data. However, the power supplied by the sensor network is restricted. Thus, SNs must store energy as often as to extend the lifespan of the network. In the proposed study, effective clustering and longer network lifetimes are achieved using multi-swarm optimization (MSO) and game theory based on locust search (LS-II). In this research, MSO is used to improve the optimum routing, while the LS-II… More >

  • Open Access

    ARTICLE

    Implementation of Hybrid Particle Swarm Optimization for Optimized Regression Testing

    V. Prakash*, S. Gopalakrishnan

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2575-2590, 2023, DOI:10.32604/iasc.2023.032122

    Abstract Software test case optimization improves the efficiency of the software by proper structure and reduces the fault in the software. The existing research applies various optimization methods such as Genetic Algorithm, Crow Search Algorithm, Ant Colony Optimization, etc., for test case optimization. The existing methods have limitations of lower efficiency in fault diagnosis, higher computational time, and high memory requirement. The existing methods have lower efficiency in software test case optimization when the number of test cases is high. This research proposes the Tournament Winner Genetic Algorithm (TW-GA) method to improve the efficiency of software test case optimization. Hospital Information… More >

Displaying 1-10 on page 1 of 1207. Per Page  

Share Link

WeChat scan