Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    PROCEEDINGS

    Subdivisional Modelling Method for Matched Metal Additive Manufacturing and Its Implementation on Novel Negative Poisson's Ratio Lattice Structures

    Ruiqi Pan1, Wei Xiong2, Liang Hao1,*, Yan Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011651

    Abstract As metal additive manufacturing (MAM) becomes more widely used in engineering, an increasing number of novel lattice structures are being developed. However, most recently developed lattice structures do not match the requirement of MAM efficiently. Based on the Design for Additive Manufacturing (DfAM), comparing the mainstream implicit and explicit modelling methods, it is proposed to introduce a Subdivisional (Sub-D) modelling method to model lattice structures with better modelling versatility, 3D printability, and mechanical properties. To this end, a novel negative Poisson's ratio (NPR) structure is developed as an example to demonstrate the efficient and wide… More >

  • Open Access

    ARTICLE

    An Optimisation Strategy for Electric Vehicle Charging Station Layout Incorporating Mini Batch K-Means and Simulated Annealing Algorithms

    Haojie Yang, Xiang Wen, Peng Geng*

    Journal on Artificial Intelligence, Vol.6, pp. 283-300, 2024, DOI:10.32604/jai.2024.056303 - 18 October 2024

    Abstract To enhance the rationality of the layout of electric vehicle charging stations, meet the actual needs of users, and optimise the service range and coverage efficiency of charging stations, this paper proposes an optimisation strategy for the layout of electric vehicle charging stations that integrates Mini Batch K-Means and simulated annealing algorithms. By constructing a circle-like service area model with the charging station as the centre and a certain distance as the radius, the maximum coverage of electric vehicle charging stations in the region and the influence of different regional environments on charging demand are… More >

  • Open Access

    ARTICLE

    Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation

    Abdulrahman M. Abdulghani*

    Journal on Artificial Intelligence, Vol.6, pp. 241-259, 2024, DOI:10.32604/jai.2024.056259 - 16 October 2024

    Abstract Cloud computing has rapidly evolved into a critical technology, seamlessly integrating into various aspects of daily life. As user demand for cloud services continues to surge, the need for efficient virtualization and resource management becomes paramount. At the core of this efficiency lies task scheduling, a complex process that determines how tasks are allocated and executed across cloud resources. While extensive research has been conducted in the area of task scheduling, optimizing multiple objectives simultaneously remains a significant challenge due to the NP (Non-deterministic Polynomial) Complete nature of the problem. This study aims to address… More >

  • Open Access

    REVIEW

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

    Baydaa Abdul Kareem1,2, Salah L. Zubaidi2,3, Nadhir Al-Ansari4,*, Yousif Raad Muhsen2,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 1-41, 2024, DOI:10.32604/cmes.2023.027954 - 22 September 2023

    Abstract Forecasting river flow is crucial for optimal planning, management, and sustainability using freshwater resources. Many machine learning (ML) approaches have been enhanced to improve streamflow prediction. Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches. Current researchers have also emphasised using hybrid models to improve forecast accuracy. Accordingly, this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years, summarising data preprocessing, univariate machine learning modelling strategy, advantages and disadvantages of standalone ML… More > Graphic Abstract

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

  • Open Access

    ARTICLE

    Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather

    Hanpeng Kou1, Tianlong Bu1, Leer Mao1, Yihong Jiao2,*, Chunming Liu2

    Energy Engineering, Vol.121, No.4, pp. 1027-1048, 2024, DOI:10.32604/ee.2023.045358 - 26 March 2024

    Abstract

    In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network, a multi-objective two-stage decentralised wind power planning method is proposed in the paper, which takes into account the network loss correction for the extreme cold region. Firstly, an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation; secondly, a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account

    More > Graphic Abstract

    Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather

  • Open Access

    ARTICLE

    Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique

    Cho Mar Aye1, Kittinan Wansaseub2, Sumit Kumar3, Ghanshyam G. Tejani4, Sujin Bureerat1, Ali R. Yildiz5, Nantiwat Pholdee1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2111-2128, 2023, DOI:10.32604/cmes.2023.028632 - 03 August 2023

    Abstract This work presents multi-fidelity multi-objective infill-sampling surrogate-assisted optimization for airfoil shape optimization. The optimization problem is posed to maximize the lift and drag coefficient ratio subject to airfoil geometry constraints. Computational Fluid Dynamic (CFD) and XFoil tools are used for high and low-fidelity simulations of the airfoil to find the real objective function value. A special multi-objective sub-optimization problem is proposed for multiple points infill sampling exploration to improve the surrogate model constructed. To validate and further assess the proposed methods, a conventional surrogate-assisted optimization method and an infill sampling surrogate-assisted optimization criterion are applied More > Graphic Abstract

    Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique

  • Open Access

    ARTICLE

    A New System for Road Traffic Optimisation Using the Virtual Traffic Light Technology

    Ahmad A. A. Alkhatib*, Adnan A. Hnaif, Thaer Sawalha

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 637-656, 2023, DOI:10.32604/csse.2023.037345 - 26 May 2023

    Abstract Large cities suffer from traffic congestion, particularly at intersections, due to a large number of vehicles, which leads to the loss of time by increasing carbon emissions, including fuel consumption. Therefore, the need for optimising the flow of vehicles at different intersections and reducing the waiting time is a critical challenge. Conventional traffic lights have been used to control traffic flow at different intersections and have been improved to become more efficient by using different algorithms, sensors and cameras. However, they also face some challenges, such as high-cost installation, operation, and maintenance issues. This paper… More >

  • Open Access

    ARTICLE

    Optimisation Strategy of Carbon Dioxide Methanation Technology Based on Microbial Electrolysis Cells

    Qifen Li, Xiaoxiao Yan*, Yongwen Yang, Liting Zhang, Yuanbo Hou

    Journal of Renewable Materials, Vol.11, No.7, pp. 3177-3191, 2023, DOI:10.32604/jrm.2023.027749 - 05 June 2023

    Abstract Microbial Electrolytic Cell (MEC) is an electrochemical reaction device that uses electrical energy as an energy input and microorganisms as catalysts to produce fuels and chemicals. The regenerative electrochemical system is a MEC improvement system for methane gas produced by biological carbon sequestration technology using renewable energy sources to provide a voltage environment. In response to the influence of fluctuating disturbances of renewable electricity and the long system start-up time, this paper analyzes the characteristics of two strategies, regulating voltage parameter changes and activated sludge pretreatment, on the methane production efficiency of the renewable gas… More >

  • Open Access

    ARTICLE

    Thermal Properties Reconstruction and Temperature Fields in Asphalt Pavements: Inverse Problem and Optimisation Algorithms

    Zhonghai Jiang1, Qian Wang1, Liangbing Zhou2,*, Chun Xiao3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1693-1708, 2023, DOI:10.32604/fdmp.2023.025270 - 30 January 2023

    Abstract A two-layer implicit difference scheme is employed in the present study to determine the temperature distribution in an asphalt pavement. The calculation of each layer only needs four iterations to achieve convergence. Furthermore, in order to improve the calculation accuracy a swarm intelligence optimization algorithm is also exploited to inversely analyze the laws by which the thermal physical parameters of the asphalt pavement materials change with temperature. Using the basic cuckoo and the gray wolf algorithms, an adaptive hybrid optimization algorithm is obtained and used to determine the relationship between the thermal diffusivity of two More >

  • Open Access

    ARTICLE

    3D Path Optimisation of Unmanned Aerial Vehicles Using Q Learning-Controlled GWO-AOA

    K. Sreelakshmy1, Himanshu Gupta1, Om Prakash Verma1, Kapil Kumar2, Abdelhamied A. Ateya3, Naglaa F. Soliman4,*

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2483-2503, 2023, DOI:10.32604/csse.2023.032737 - 21 December 2022

    Abstract Unmanned Aerial Vehicles (UAVs) or drones introduced for military applications are gaining popularity in several other fields as well such as security and surveillance, due to their ability to perform repetitive and tedious tasks in hazardous environments. Their increased demand created the requirement for enabling the UAVs to traverse independently through the Three Dimensional (3D) flight environment consisting of various obstacles which have been efficiently addressed by metaheuristics in past literature. However, not a single optimization algorithms can solve all kind of optimization problem effectively. Therefore, there is dire need to integrate metaheuristic for general More >

Displaying 1-10 on page 1 of 29. Per Page