Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    LOEV-APO-MLP: Latin Hypercube Opposition-Based Elite Variation Artificial Protozoa Optimizer for Multilayer Perceptron Training

    Zhiwei Ye1,2,3, Dingfeng Song1, Haitao Xie1,2,3,*, Jixin Zhang1,2, Wen Zhou1,2, Mengya Lei1,2, Xiao Zheng1,2, Jie Sun1, Jing Zhou1, Mengxuan Li1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5509-5530, 2025, DOI:10.32604/cmc.2025.067342 - 23 October 2025

    Abstract The Multilayer Perceptron (MLP) is a fundamental neural network model widely applied in various domains, particularly for lightweight image classification, speech recognition, and natural language processing tasks. Despite its widespread success, training MLPs often encounter significant challenges, including susceptibility to local optima, slow convergence rates, and high sensitivity to initial weight configurations. To address these issues, this paper proposes a Latin Hypercube Opposition-based Elite Variation Artificial Protozoa Optimizer (LOEV-APO), which enhances both global exploration and local exploitation simultaneously. LOEV-APO introduces a hybrid initialization strategy that combines Latin Hypercube Sampling (LHS) with Opposition-Based Learning (OBL), thus… More >

  • Open Access

    ARTICLE

    A Novel Approach Based on Recuperated Seed Search Optimization for Solving Mechanical Engineering Design Problems

    Sumika Chauhan1, Govind Vashishtha1,*, Riya Singh2, Divesh Bharti3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 309-343, 2025, DOI:10.32604/cmes.2025.068628 - 31 July 2025

    Abstract This paper introduces a novel optimization approach called Recuperated Seed Search Optimization (RSSO), designed to address challenges in solving mechanical engineering design problems. Many optimization techniques struggle with slow convergence and suboptimal solutions due to complex, nonlinear natures. The Sperm Swarm Optimization (SSO) algorithm, which mimics the sperm’s movement to reach an egg, is one such technique. To improve SSO, researchers combined it with three strategies: opposition-based learning (OBL), Cauchy mutation (CM), and position clamping. OBL introduces diversity to SSO by exploring opposite solutions, speeding up convergence. CM enhances both exploration and exploitation capabilities throughout More >

  • Open Access

    ARTICLE

    Innovative Approaches to Task Scheduling in Cloud Computing Environments Using an Advanced Willow Catkin Optimization Algorithm

    Jeng-Shyang Pan1,2, Na Yu1, Shu-Chuan Chu1,*, An-Ning Zhang1, Bin Yan3, Junzo Watada4

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2495-2520, 2025, DOI:10.32604/cmc.2024.058450 - 17 February 2025

    Abstract The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s… More >

  • Open Access

    ARTICLE

    An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem

    Feyza Altunbey Özbay1, Erdal Özbay2, Farhad Soleimanian Gharehchopogh3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1067-1110, 2024, DOI:10.32604/cmes.2024.054334 - 27 September 2024

    Abstract Artificial rabbits optimization (ARO) is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature. However, for solving optimization problems, the ARO algorithm shows slow convergence speed and can fall into local minima. To overcome these drawbacks, this paper proposes chaotic opposition-based learning ARO (COARO), an improved version of the ARO algorithm that incorporates opposition-based learning (OBL) and chaotic local search (CLS) techniques. By adding OBL to ARO, the convergence speed of the algorithm increases and it explores the search space better. Chaotic maps in CLS… More > Graphic Abstract

    An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem

  • Open Access

    ARTICLE

    BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems

    Farouq Zitouni1,*, Saad Harous2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Guojiang Xiong6, Fatima Zohra Khechiba1, Khadidja Kherchouche1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 219-265, 2024, DOI:10.32604/cmes.2024.052001 - 20 August 2024

    Abstract Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems. This approach aims to leverage the strengths of multiple algorithms, enhancing solution quality, convergence speed, and robustness, thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks. In this paper, we introduce a hybrid algorithm that amalgamates three distinct metaheuristics: the Beluga Whale Optimization (BWO), the Honey Badger Algorithm (HBA), and the Jellyfish Search (JS) optimizer. The proposed hybrid algorithm will be referred to as BHJO. Through this fusion, the BHJO algorithm aims to… More >

  • Open Access

    ARTICLE

    An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm

    Chen Zhang1, Liming Liu1, Yufei Yang1, Yu Sun1, Jiaxu Ning2, Yu Zhang3, Changsheng Zhang1,4,*, Ying Guo4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5201-5223, 2024, DOI:10.32604/cmc.2024.050863 - 20 June 2024

    Abstract The flying foxes optimization (FFO) algorithm, as a newly introduced metaheuristic algorithm, is inspired by the survival tactics of flying foxes in heat wave environments. FFO preferentially selects the best-performing individuals. This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area. To address this issue, the paper introduces an opposition-based learning-based search mechanism for FFO algorithm (IFFO). Firstly, this paper introduces niching techniques to improve the survival list method, which not only focuses on the adaptability of individuals but also considers the population’s crowding degree More >

  • Open Access

    ARTICLE

    An Optimized System of Random Forest Model by Global Harmony Search with Generalized Opposition-Based Learning for Forecasting TBM Advance Rate

    Yingui Qiu1, Shuai Huang1, Danial Jahed Armaghani2, Biswajeet Pradhan3, Annan Zhou4, Jian Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2873-2897, 2024, DOI:10.32604/cmes.2023.029938 - 15 December 2023

    Abstract As massive underground projects have become popular in dense urban cities, a problem has arisen: which model predicts the best for Tunnel Boring Machine (TBM) performance in these tunneling projects? However, performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers. On the other hand, a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule. The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications. The previously-proposed intelligent techniques in this field… More >

  • Open Access

    ARTICLE

    Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System

    Laith Abualigah1,2,3,4,5,6,*, Serdar Ekinci7, Davut Izci7,8, Raed Abu Zitar9

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 169-183, 2023, DOI:10.32604/iasc.2023.040291 - 05 February 2024

    Abstract Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability. This study proposes a novel approach for designing a fractional order proportional-integral-derivative (FOPID) controller that utilizes a modified elite opposition-based artificial hummingbird algorithm (m-AHA) for optimal parameter tuning. Our approach outperforms existing optimization techniques on benchmark functions, and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision. Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving More >

  • Open Access

    ARTICLE

    An Improved Whale Optimization Algorithm for Global Optimization and Realized Volatility Prediction

    Xiang Wang1, Liangsa Wang2,*, Han Li1, Yibin Guo1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2935-2969, 2023, DOI:10.32604/cmc.2023.044948 - 26 December 2023

    Abstract The original whale optimization algorithm (WOA) has a low initial population quality and tends to converge to local optimal solutions. To address these challenges, this paper introduces an improved whale optimization algorithm called OLCHWOA, incorporating a chaos mechanism and an opposition-based learning strategy. This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase, thereby enhancing the quality of the initial whale population. Additionally, including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations. The work and contributions of this paper are primarily reflected in two aspects.… More >

  • Open Access

    ARTICLE

    A Spider Monkey Optimization Algorithm Combining Opposition-Based Learning and Orthogonal Experimental Design

    Weizhi Liao1, Xiaoyun Xia1,3, Xiaojun Jia1, Shigen Shen2,*, Helin Zhuang4,*, Xianchao Zhang1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3297-3323, 2023, DOI:10.32604/cmc.2023.040967 - 08 October 2023

    Abstract As a new bionic algorithm, Spider Monkey Optimization (SMO) has been widely used in various complex optimization problems in recent years. However, the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant. Thus, this paper focuses on how to reconstruct SMO to improve its performance, and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design (SMO3) is developed. A position updating method based on the historical optimal domain and particle swarm for Local Leader Phase (LLP) and Global Leader Phase (GLP) is… More >

Displaying 1-10 on page 1 of 15. Per Page