Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Malfunction Diagnosis of the GTCC System under All Operating Conditions Based on Exergy Analysis

    Xinwei Wang1,2,*, Ming Li1, Hankun Bing1, Dongxing Zhang1, Yuanshu Zhang1

    Energy Engineering, Vol.121, No.12, pp. 3875-3898, 2024, DOI:10.32604/ee.2024.056237 - 22 November 2024

    Abstract After long-term operation, the performance of components in the GTCC system deteriorates and requires timely maintenance. Due to the inability to directly measure the degree of component malfunction, it is necessary to use advanced exergy analysis diagnosis methods to characterize the components’ health condition (degree of malfunction) through operation data of the GTCC system. The dissipative temperature is used to describe the degree of malfunction of different components in the GTCC system, and an advanced exergy analysis diagnostic method is used to establish a database of overall operating condition component malfunctions in the GTCC system.… More >

  • Open Access

    ARTICLE

    Numerical Investigation on Thermal Performance of Two-Phase Immersion Cooling Method for High-Power Electronics

    Liqun Zhou1,*, Weilin Yang1, Chaojie Li2, Shi Lin3

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 157-173, 2024, DOI:10.32604/fhmt.2023.045135 - 21 March 2024

    Abstract The power density of electronic components grows continuously, and the subsequent heat accumulation and temperature increase inevitably affect electronic equipment’s stability, reliability and service life. Therefore, achieving efficient cooling in limited space has become a key problem in updating electronic devices with high performance and high integration. Two-phase immersion is a novel cooling method. The computational fluid dynamics (CFD) method is used to investigate the cooling performance of two-phase immersion cooling on high-power electronics. The two-dimensional CFD model is utilized by the volume of fluid (VOF) method and Reynolds Stress Model. Lee’s model was employed… More > Graphic Abstract

    Numerical Investigation on Thermal Performance of Two-Phase Immersion Cooling Method for High-Power Electronics

  • Open Access

    REVIEW

    Study of Intelligent Approaches to Identify Impact of Environmental Temperature on Ultrasonic GWs Based SHM: A Review

    Saqlain Abbas1,2,*, Zulkarnain Abbas3, Xiaotong Tu4, Yanping Zhu2

    Journal on Artificial Intelligence, Vol.5, pp. 43-56, 2023, DOI:10.32604/jai.2023.040948 - 22 September 2023

    Abstract Structural health monitoring (SHM) is considered an effective approach to analyze the efficient working of several mechanical components. For this purpose, ultrasonic guided waves can cover long-distance and assess large infrastructures in just a single test using a small number of transducers. However, the working of the SHM mechanism can be affected by some sources of variations (i.e., environmental). To improve the final results of ultrasonic guided wave inspections, it is necessary to highlight and attenuate these environmental variations. The loading parameters, temperature and humidity have been recognized as the core environmental sources of variations… More >

Displaying 1-10 on page 1 of 3. Per Page