Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Deep Neural Networks Based Approach for Battery Life Prediction

    Sweta Bhattacharya1, Praveen Kumar Reddy Maddikunta1, Iyapparaja Meenakshisundaram1, Thippa Reddy Gadekallu1, Sparsh Sharma2, Mohammed Alkahtani3, Mustufa Haider Abidi4,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2599-2615, 2021, DOI:10.32604/cmc.2021.016229 - 21 July 2021

    Abstract The Internet of Things (IoT) and related applications have witnessed enormous growth since its inception. The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain. Although the applicability of these applications are predominant, battery life remains to be a major challenge for IoT devices, wherein unreliability and shortened life would make an IoT application completely useless. In this work, an optimized deep neural networks based model is used to predict the battery life of the IoT systems. The present study uses the Chicago Park Beach dataset collected More >

  • Open Access

    ARTICLE

    Adaptive Binary Coding for Scene Classification Based on Convolutional Networks

    Shuai Wang1, Xianyi Chen2, *

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2065-2077, 2020, DOI:10.32604/cmc.2020.09857 - 16 September 2020

    Abstract With the rapid development of computer technology, millions of images are produced everyday by different sources. How to efficiently process these images and accurately discern the scene in them becomes an important but tough task. In this paper, we propose a novel supervised learning framework based on proposed adaptive binary coding for scene classification. Specifically, we first extract some high-level features of images under consideration based on available models trained on public datasets. Then, we further design a binary encoding method called one-hot encoding to make the feature representation more efficient. Benefiting from the proposed More >

Displaying 1-10 on page 1 of 2. Per Page