Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Effect of Salinity on Imbibition-Based Oil Production

    Xiong Liu1, Yueqi Cui1,*, Yirui Ren1, Lingxuan Peng2, Yuchan Cheng1, Zhiyuan Du1, Yu Chen1, Lishan Cao3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2815-2828, 2025, DOI:10.32604/fdmp.2025.073775 - 01 December 2025

    Abstract This study explores the impact of salinity on fluid replacement during imbibition-driven oil recovery through a series of core self-imbibition experiments. By integrating key parameters such as interfacial tension, contact angle, and oil displacement efficiency, we systematically examine how variations in salinity level, ion type, and ion concentration affect the imbibition process. The results demonstrate that the salinity of the injected fluid exerts a strong influence on the rate and extent of oil recovery. Compared with high-salinity conditions, low-salinity injection, particularly below 5000 mg·L−1, induces pronounced fluctuations in the replacement rate, achieving the highest recovery at More >

  • Open Access

    REVIEW

    Enhanced Oil Recovery in Sandstone Reservoirs: A Review of Mechanistic Advances and Hydrocarbon Predictive Techniques

    Surajudeen Sikiru1,2,*, Jemilat Yetunde Yusuf 3, Hassan Soleimani4, Niraj Kumar5, Zia ur Rehman6, Bonnia N N1,*

    Energy Engineering, Vol.122, No.10, pp. 3917-3960, 2025, DOI:10.32604/ee.2025.067815 - 30 September 2025

    Abstract Enhanced oil recovery (EOR) refers to the many methodologies used to augment the volume of crude oil extracted from an oil reservoir. These approaches are used subsequent to the exhaustion of basic and secondary recovery methods. There are three primary categories of Enhanced Oil Recovery (EOR): thermal, gas injection, and chemical. Enhanced oil recovery methods may be costly and intricate; yet, they facilitate the extraction of supplementary oil that would otherwise remain in the reservoir. Enhanced Oil Recovery (EOR) may prolong the lifespan of an oil field and augment the total output from a specific… More >

  • Open Access

    ARTICLE

    Experimental Investigation into the Impact of a Viscosity Reducer on the Crude Oil Recovery Rate in a Low-Permeability Reservoir

    Baoyu Chen1,2, Meina Li3, Jicheng Zhang1, Wenguo Ma1,*, Yueqi Wang1, Tianchen Pan1, Xuan Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1459-1471, 2025, DOI:10.32604/fdmp.2025.060255 - 30 June 2025

    Abstract The relative permeability of oil and water is a key factor in assessing the production performance of a reservoir. This study analyzed the impact of injecting a viscosity reducer solution into low-viscosity crude oil to enhance fluid flow within a low-permeability reservoir. At 72°C, the oil-water dispersion solution achieved a viscosity reduction rate (f) of 92.42%, formulated with a viscosity reducer agent concentration (CVR) of 0.1% and an oil-water ratio of 5:5. The interfacial tension between the viscosity reducer solution and the crude oil remained stable at approximately 1.0 mN/m across different concentrations, with the minimum More >

  • Open Access

    ARTICLE

    Modeling Oil Production and Heat Distribution during Hot Water-Flooding in an Oil Reservoir

    Chinedu Nwaigwe1,2,*, Abdon Atangana2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1239-1259, 2025, DOI:10.32604/fdmp.2025.059925 - 30 May 2025

    Abstract In the early stages of oil exploration, oil is produced through processes such as well drilling. Later, hot water may be injected into the well to improve production. A key challenge is understanding how the temperature and velocity of the injected hot water affect the production rate. This is the focus of the current study. It proposes variable-viscosity mathematical models for heat and water saturation in a reservoir containing Bonny-light crude oil, with the aim of investigating the effects of water temperature and velocity on the recovery rate. First, two sets of experimental data are… More >

  • Open Access

    ARTICLE

    A Connectivity Model for the Numerical Simulation of Microgel Flooding in Low-Permeability Reservoirs

    Tao Wang1,2, Haiyang Yu1,*, Jie Gao2, Fei Wang2, Xinlong Zhang3,*, Hao Yang2, Guirong Di2, Pengrun Wang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1191-1200, 2025, DOI:10.32604/fdmp.2025.058865 - 30 May 2025

    Abstract Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production, yet direct, targeted solutions remain elusive. In recent years, chemical flooding techniques designed for tertiary oil recovery have garnered significant attention, with microgel flooding emerging as a particularly prominent area of research. Despite its promise, the complex mechanisms underlying microgel flooding have been rarely investigated numerically. This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures. To enhance the accuracy of these characterizations, the viscosity of microgels is adjusted More >

  • Open Access

    ARTICLE

    A Mathematical Modeling of 3D Cubical Geometry Hypothetical Reservoir under the Effect of Nanoparticles Flow Rate, Porosity, and Relative Permeability

    Mudasar Zafar1,2,3,*, Hamzah Sakidin1, Abida Hussain1, Loshini Thiruchelvam4, Mikhail Sheremet5, Iskandar Dzulkarnain3, Roslinda Nazar6, Abdullah Al-Yaari1, Rizwan Safdar7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1193-1211, 2024, DOI:10.32604/cmes.2024.049259 - 27 September 2024

    Abstract This study aims to formulate a steady-state mathematical model for a three-dimensional permeable enclosure (cavity) to determine the oil extraction rate using three distinct nanoparticles, SiO2, Al2O3, and Fe2O3, in unconventional oil reservoirs. The simulation is conducted for different parameters of volume fractions, porosities, and mass flow rates to determine the optimal oil recovery. The impact of nanoparticles on relative permeability ( and water is also investigated. The simulation process utilizes the finite volume ANSYS Fluent. The study results showed that when the mass flow rate at the inlet is low, oil recovery goes up. In addition, More >

  • Open Access

    ARTICLE

    Assessment of Nanoparticle-Enriched Solvents for Oil Recovery Enhancement

    Muayad M. Hasan1,*, Firas K. Al-Zuhairi2, Anfal H. Sadeq1, Rana A. Azeez1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2827-2835, 2023, DOI:10.32604/fdmp.2023.027746 - 18 September 2023

    Abstract Solvents are generally used to reduce the viscosity of heavy crude oil and ultimately enhance oil recovery. Recently, a new method has been introduced where nanoparticles (NPs) are exploited to induce enhanced oil recovery owing to their ability to improve the mobility ratio, dampen the interfacial tension, and alter rock wettability. This study investigated the integration of nano-alumina (Al2O3) NPs with an n-hexane solvent. In particular, a Brookfield viscometer has been used to measure the crude oil viscosity and it has been found that NPs can effectively lead to a significant decrease in the overall oil More >

  • Open Access

    ARTICLE

    Experimental Study on the Treatment of Tertiary Oil Recovery Wastewater via a Novel Electro-Coagulation Method

    Wei Cui1,2,*, Zhilun Yan1,2, Zhi Tang1,2, Mengyao Xu1,2, Jian Tian1,2, Chengyi Shen1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 51-60, 2023, DOI:10.32604/fdmp.2023.021499 - 02 August 2022

    Abstract At present, methods for treating tertiary oil recovery wastewater via electro-coagulation are still in their early stage of development. In this study, a device for electro-coagulation wastewater treatment was built and tested in an oil field. The effects that the initial pH value, electrode type, and connection mode have on the coagulation and separation effect were assessed by measuring the mass fraction and turbidity of oil. The results have shown that when the electro-coagulation method is used, the effectiveness of the treatment can be significantly increased in neutral pH conditions (pH = 7), in acidic conditions, and More >

  • Open Access

    ARTICLE

    Study of CO2 Flooding to Improve Development Effect in Conglomerate Reservoirs

    Haihai Dong1, Yaguang Qu2,3,*, Ming Liu4, Lei Zhang1, Jiakun Wu5

    Energy Engineering, Vol.119, No.4, pp. 1681-1695, 2022, DOI:10.32604/ee.2022.019843 - 23 May 2022

    Abstract For low permeability sandstone reservoirs, CO2 flooding has been proved to be an effective method to enhance oil recovery. Reservoir A is a typical conglomerate reservoir in Xinjiang oilfield. The reservoir has strong water sensitivity, and the injection pressure continues to rise. Furthermore the oil well pressure continues to drop. According to the screening conditions of CO2 flooding, the reservoir A can easily achieve CO2 miscible flooding with moderate temperature. And the reservoir has the advantage of being close to the gas source. Firstly, the relationship curve between CO2 oil displacement efficiency and oil displacement pressure was… More >

  • Open Access

    ARTICLE

    Predicted Oil Recovery Scaling-Law Using Stochastic Gradient Boosting Regression Model

    Mohamed F. El-Amin1,5, Abdulhamit Subasi2, Mahmoud M. Selim3,*, Awad Mousa4

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2349-2362, 2021, DOI:10.32604/cmc.2021.017102 - 13 April 2021

    Abstract In the process of oil recovery, experiments are usually carried out on core samples to evaluate the recovery of oil, so the numerical data are fitted into a non-dimensional equation called scaling-law. This will be essential for determining the behavior of actual reservoirs. The global non-dimensional time-scale is a parameter for predicting a realistic behavior in the oil field from laboratory data. This non-dimensional universal time parameter depends on a set of primary parameters that inherit the properties of the reservoir fluids and rocks and the injection velocity, which dynamics of the process. One of… More >

Displaying 1-10 on page 1 of 10. Per Page