Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (69)
  • Open Access

    ARTICLE

    Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks

    Zheyuan Jia, Fenglin Jin*, Jun Xie, Yuan He

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069128 - 10 November 2025

    Abstract This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks (SAGIN) through a novel Recursive Multi-Agent Proximal Policy Optimization (RMAPPO) algorithm. The exponential growth of mobile devices and data traffic has substantially increased network congestion, particularly in urban areas and regions with limited terrestrial infrastructure. Our approach jointly optimizes unmanned aerial vehicle (UAV) trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput, minimize energy consumption, and maintain equitable resource distribution. The proposed RMAPPO framework incorporates recurrent neural networks (RNNs) to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent More >

  • Open Access

    ARTICLE

    DRL-Based Cross-Regional Computation Offloading Algorithm

    Lincong Zhang1, Yuqing Liu1, Kefeng Wei2, Weinan Zhao1, Bo Qian1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069108 - 10 November 2025

    Abstract In the field of edge computing, achieving low-latency computational task offloading with limited resources is a critical research challenge, particularly in resource-constrained and latency-sensitive vehicular network environments where rapid response is mandatory for safety-critical applications. In scenarios where edge servers are sparsely deployed, the lack of coordination and information sharing often leads to load imbalance, thereby increasing system latency. Furthermore, in regions without edge server coverage, tasks must be processed locally, which further exacerbates latency issues. To address these challenges, we propose a novel and efficient Deep Reinforcement Learning (DRL)-based approach aimed at minimizing average… More >

  • Open Access

    ARTICLE

    A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles

    Junjun Ren1, Guoqiang Chen2, Zheng-Yi Chai3, Dong Yuan4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.068795 - 10 November 2025

    Abstract Vehicle Edge Computing (VEC) and Cloud Computing (CC) significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit (RSU), thereby achieving lower delay and energy consumption. However, due to the limited storage capacity and energy budget of RSUs, it is challenging to meet the demands of the highly dynamic Internet of Vehicles (IoV) environment. Therefore, determining reasonable service caching and computation offloading strategies is crucial. To address this, this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading. By… More >

  • Open Access

    ARTICLE

    High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework

    Zheng Yao*, Puqing Chang

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068248 - 10 November 2025

    Abstract As Internet of Things (IoT) applications expand, Mobile Edge Computing (MEC) has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices. Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies, conflicting objectives, and limited resources. This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC. We jointly consider task heterogeneity, high-dimensional objectives, and flexible resource scheduling, modeling the problem as a Many-objective optimization. To solve it, we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on More >

  • Open Access

    ARTICLE

    A Spectrum Allocation and Security-Sensitive Task Offloading Algorithm in MEC Using DVS

    Xianwei Li1,2, Bo Wei3,4, Xiaoying Yang5,6,*, Amr Tolba7, Zijian Zeng8, Osama Alfarraj7,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3437-3455, 2025, DOI:10.32604/cmc.2025.067200 - 23 September 2025

    Abstract With the advancements of the next-generation communication networking and Internet of Things (IoT) technologies, a variety of computation-intensive applications (e.g., autonomous driving and face recognition) have emerged. The execution of these IoT applications demands a lot of computing resources. Nevertheless, terminal devices (TDs) usually do not have sufficient computing resources to process these applications. Offloading IoT applications to be processed by mobile edge computing (MEC) servers with more computing resources provides a promising way to address this issue. While a significant number of works have studied task offloading, only a few of them have considered More >

  • Open Access

    ARTICLE

    Improved PPO-Based Task Offloading Strategies for Smart Grids

    Qian Wang1, Ya Zhou1,2,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3835-3856, 2025, DOI:10.32604/cmc.2025.065465 - 03 July 2025

    Abstract Edge computing has transformed smart grids by lowering latency, reducing network congestion, and enabling real-time decision-making. Nevertheless, devising an optimal task-offloading strategy remains challenging, as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network conditions. We cast the offloading problem as a Markov Decision Process (MDP) and solve it with Deep Reinforcement Learning (DRL). Specifically, we present a three-tier architecture—end devices, edge nodes, and a cloud server—and enhance Proximal Policy Optimization (PPO) to learn adaptive, energy-aware policies. A Convolutional Neural Network (CNN) extracts high-level features from system states, enabling More >

  • Open Access

    ARTICLE

    A Multi-Objective Joint Task Offloading Scheme for Vehicular Edge Computing

    Yiwei Zhang, Xin Cui*, Qinghui Zhao

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2355-2373, 2025, DOI:10.32604/cmc.2025.065430 - 03 July 2025

    Abstract The rapid advance of Connected-Automated Vehicles (CAVs) has led to the emergence of diverse delay-sensitive and energy-constrained vehicular applications. Given the high dynamics of vehicular networks, unmanned aerial vehicles-assisted mobile edge computing (UAV-MEC) has gained attention in providing computing resources to vehicles and optimizing system costs. We model the computing offloading problem as a multi-objective optimization challenge aimed at minimizing both task processing delay and energy consumption. We propose a three-stage hybrid offloading scheme called Dynamic Vehicle Clustering Game-based Multi-objective Whale Optimization Algorithm (DVCG-MWOA) to address this problem. A novel dynamic clustering algorithm is designed… More >

  • Open Access

    ARTICLE

    A Comprehensive Study of Resource Provisioning and Optimization in Edge Computing

    Sreebha Bhaskaran*, Supriya Muthuraman

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5037-5070, 2025, DOI:10.32604/cmc.2025.062657 - 19 May 2025

    Abstract Efficient resource provisioning, allocation, and computation offloading are critical to realizing low-latency, scalable, and energy-efficient applications in cloud, fog, and edge computing. Despite its importance, integrating Software Defined Networks (SDN) for enhancing resource orchestration, task scheduling, and traffic management remains a relatively underexplored area with significant innovation potential. This paper provides a comprehensive review of existing mechanisms, categorizing resource provisioning approaches into static, dynamic, and user-centric models, while examining applications across domains such as IoT, healthcare, and autonomous systems. The survey highlights challenges such as scalability, interoperability, and security in managing dynamic and heterogeneous infrastructures. More >

  • Open Access

    ARTICLE

    Quantum-Enhanced Edge Offloading and Resource Scheduling with Privacy-Preserving Machine Learning

    Junjie Cao1,2, Zhiyong Yu2,*, Xiaotao Xu1, Baohong Zhu3, Jian Yang2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5235-5257, 2025, DOI:10.32604/cmc.2025.062371 - 19 May 2025

    Abstract This paper introduces a quantum-enhanced edge computing framework that synergizes quantum-inspired algorithms with advanced machine learning techniques to optimize real-time task offloading in edge computing environments. This innovative approach not only significantly improves the system’s real-time responsiveness and resource utilization efficiency but also addresses critical challenges in Internet of Things (IoT) ecosystems—such as high demand variability, resource allocation uncertainties, and data privacy concerns—through practical solutions. Initially, the framework employs an adaptive adjustment mechanism to dynamically manage task and resource states, complemented by online learning models for precise predictive analytics. Secondly, it accelerates the search for… More >

  • Open Access

    ARTICLE

    A Task Offloading Method for Vehicular Edge Computing Based on Reputation Assessment

    Jun Li1,*, Yawei Dong1, Liang Ni1, Guopeng Feng1, Fangfang Shan1,2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3537-3552, 2025, DOI:10.32604/cmc.2025.059325 - 16 April 2025

    Abstract With the development of vehicle networks and the construction of roadside units, Vehicular Ad Hoc Networks (VANETs) are increasingly promoting cooperative computing patterns among vehicles. Vehicular edge computing (VEC) offers an effective solution to mitigate resource constraints by enabling task offloading to edge cloud infrastructure, thereby reducing the computational burden on connected vehicles. However, this sharing-based and distributed computing paradigm necessitates ensuring the credibility and reliability of various computation nodes. Existing vehicular edge computing platforms have not adequately considered the misbehavior of vehicles. We propose a practical task offloading algorithm based on reputation assessment to More >

Displaying 1-10 on page 1 of 69. Per Page