Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Lightweight UAV Visual Obstacle Avoidance Algorithm Based on Improved YOLOv8

    Zongdong Du1,2, Xuefeng Feng3, Feng Li3, Qinglong Xian3, Zhenhong Jia1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2607-2627, 2024, DOI:10.32604/cmc.2024.056616 - 18 November 2024

    Abstract The importance of unmanned aerial vehicle (UAV) obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance, thereby protecting people and property. We propose UAD-YOLOv8, a lightweight YOLOv8-based obstacle detection algorithm optimized for UAV obstacle avoidance. The algorithm enhances the detection capability for small and irregular obstacles by removing the P5 feature layer and introducing deformable convolution v2 (DCNv2) to optimize the cross stage partial bottleneck with 2 convolutions and fusion (C2f) module. Additionally, it reduces the model’s parameter count and computational load by constructing the unite ghost and depth-wise separable… More >

  • Open Access

    ARTICLE

    Deep Reinforcement Learning Based Unmanned Aerial Vehicle (UAV) Control Using 3D Hand Gestures

    Fawad Salam Khan1,4, Mohd Norzali Haji Mohd1,*, Saiful Azrin B. M. Zulkifli2, Ghulam E Mustafa Abro2, Suhail Kazi3, Dur Muhammad Soomro1

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5741-5759, 2022, DOI:10.32604/cmc.2022.024927 - 21 April 2022

    Abstract The evident change in the design of the autopilot system produced massive help for the aviation industry and it required frequent upgrades. Reinforcement learning delivers appropriate outcomes when considering a continuous environment where the controlling Unmanned Aerial Vehicle (UAV) required maximum accuracy. In this paper, we designed a hybrid framework, which is based on Reinforcement Learning and Deep Learning where the traditional electronic flight controller is replaced by using 3D hand gestures. The algorithm is designed to take the input from 3D hand gestures and integrate with the Deep Deterministic Policy Gradient (DDPG) to receive… More >

Displaying 1-10 on page 1 of 2. Per Page