Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (62)
  • Open Access

    PROCEEDINGS

    Numerical Modeling for Crack Propagation Based on a Multifunctional Super Singular Element

    Xuecheng Ping1,2,*, Congman Wang1,2, Xingxing Wang1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011724

    Abstract The traditional finite element method (FEM) often requires a large number of refined meshes to analyze the mechanical behavior of geometric discontinuities, its computational efficiency and convergence speed are affected. A FEM for crack propagation based on the combination of an adaptive remeshing technique with the multifunctional super singular element (MSSE) at the crack tip is proposed for the fracture process simulation of two-dimensional (2D) materials. The adaptive FEM for crack propagation divides the crack tip neighborhood into the MSSE region, the protection element (PE) region and the background element (BE) region. The MSSE is… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating

    O. N. Goncharova1, V. B. Bekezhanova2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1667-1686, 2024, DOI:10.32604/fdmp.2024.047959 - 23 July 2024

    Abstract The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied. The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed. In particular, the cases of local heating from below and distributed thermal load from the lateral walls are considered. The simulation is carried out within the frame of a two-sided evaporative convection model based on the Boussinesq approximation. A benzine–air system is considered as reference system. The variation in time of the contact angle is described for both heating More > Graphic Abstract

    Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating

  • Open Access

    ARTICLE

    Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study

    Farman Saifi1,*, Mohd Javaid1, Abid Haleem1, S. M. Anas2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2747-2777, 2024, DOI:10.32604/cmes.2024.051490 - 08 July 2024

    Abstract Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infrastructure systems and networks capable of withstanding blast loading. Initially centered on high-profile facilities such as embassies and petrochemical plants, this concern now extends to a wider array of infrastructures and facilities. Engineers and scholars increasingly prioritize structural safety against explosions, particularly to prevent disproportionate collapse and damage to nearby structures. Urbanization has further amplified the reliance on oil and gas pipelines, making them vital for urban life and prime targets for terrorist activities. Consequently, there is a growing imperative for computational… More >

  • Open Access

    ARTICLE

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

    Lisheng Luo1,*, Xinran Xie1, Yongqiang Zhang1, Xiaofeng Zhang2, Xinyue Cui1

    Journal of Renewable Materials, Vol.11, No.2, pp. 791-809, 2023, DOI:10.32604/jrm.2022.022539 - 22 September 2022

    Abstract Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects, which usually depends on empirical parameters. There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage, and consequently, the failure of such glulam beams cannot be predicted effectively. To address these issues, an analytical method considering material nonlinearity was proposed for glulam beams, and the calculating equations of deflection and shear stress distribution for different failure modes were established. The proposed method was verified by experiments and More > Graphic Abstract

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

  • Open Access

    ARTICLE

    Numerical Modelling of Drying Induced Cracks in Wood Discs Using the Extended Finite Element Method

    Zongying Fu1, Yongdong Zhou1, Tingguo Yan2, Yun Lu1,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 93-102, 2023, DOI:10.32604/jrm.2023.021808 - 10 August 2022

    Abstract Drying crack is a common phenomenon occurring during moisture discharge from wood, reducing efficient wood utilization. Drying crack is primarily caused by drying stress, and the reasonable methods for determining drying stress are sparse. In this study, the initiation and propagation of cracks during wood discs drying were simulated using the extended finite element method (XFEM). The distribution of drying stress and displacement was analyzed at different crack conditions based on the simulation results. This study aimed to solve the problem of the limitation of drying stress testing methods and provide a new idea for More >

  • Open Access

    PROCEEDINGS

    Experimental And Numerical Modelling of Cyclic Softening and Damage Behaviors for a Turbine Rotor Material at Elevated Temperature

    M. Li1,2,*, D.H. Li3, Y. Rae1, W. Sun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-2, 2022, DOI:10.32604/icces.2022.08759

    Abstract In order to better understand the physical process of deformation and cyclic softening a 12% Cr martensitic stainless steel FV566 has been cyclically tested at high temperature in strain control. Increase in temperature was found to increase the cyclic life, softening rate and viscous stress magnitude. An increase in the dwell time led to the acceleration of the material degradation. The microstructure changes and dominating deformation mechanisms were investigated by means of scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. The results have revealed a gradual sub-grain coarsening, transformation of lath structure into… More >

  • Open Access

    ARTICLE

    Research on Spatial Statistical Downscaling Method of Meteorological Data Applied to Photovoltaic Prediction

    Yan Jin1,*, Dingmei Wang2, Ruiping Zhang1, Haiying Dong1

    Energy Engineering, Vol.119, No.5, pp. 1923-1940, 2022, DOI:10.32604/ee.2022.018750 - 21 July 2022

    Abstract Aiming at the low spatial resolution of meteorological data output from a numerical model in photovoltaic power prediction, a geographically weighted statistical downscaling method considers the influence factors such as normalized vegetation index (NDVI), digital elevation model (DEM), slope direction, longitude and latitude is proposed. This method is based on the correlation between meteorological data and NDVI, DEM, slope direction, latitude and longitude, and introduces DEM and local Moran index to improve the regression model, and obtains 100 * 100 m high-resolution meteorological spatial distribution data. Finally, combining the measured data of the study area and More >

  • Open Access

    ARTICLE

    A Numerical Modelling Method of Fractured Reservoirs with Embedded Meshes and Topological Fracture Projection Configurations

    Xiang Rao1,2,*, Yina Liu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1403-1429, 2022, DOI:10.32604/cmes.2022.018879 - 19 April 2022

    Abstract Projection-based embedded discrete fracture model (pEDFM) is an effective numerical model to handle the flow in fractured reservoirs, with high efficiency and strong generalization of flow models. However, this paper points out that pEDFM fails to handle flow barriers in most cases, and identifies the physical projection configuration of fractures is a key step in pEDFM. This paper presents and proves the equivalence theorem, which explains the geometric nature of physical projection configurations of fractures, that is, the projection configuration of a fracture being physical is equivalent to it being topologically homeomorphic to the fracture, More >

  • Open Access

    ARTICLE

    Effects of Spark Energy on Spark Plug Fault Recognition in a Spark Ignition Engine

    A. A. Azrin1,*, I. M. Yusri1,2, M. H. Mat Yasin3, A. Zainal4

    Energy Engineering, Vol.119, No.1, pp. 189-199, 2022, DOI:10.32604/EE.2022.017843 - 22 November 2021

    Abstract The increasing demands for fuel economy and emission reduction have led to the development of lean/diluted combustion strategies for modern Spark Ignition (SI) engines. The new generation of SI engines requires higher spark energy and a longer discharge duration to improve efficiency and reduce the backpressure. However, the increased spark energy gives negative impacts on the ignition system which results in deterioration of the spark plug. Therefore, a numerical model was used to estimate the spark energy of the ignition system based on the breakdown voltage. The trend of spark energy is then recognized by… More >

  • Open Access

    ARTICLE

    A Numerical Model for Simulating Two-Phase Flow with Adaptive Mesh Refinement

    Yunxing Zhang, Shan Ma, Kangping Liao, Wenyang Duan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 43-64, 2021, DOI:10.32604/cmes.2021.014847 - 28 June 2021

    Abstract In this study, a numerical model for simulating two-phase flow is developed. The Cartesian grid with Adaptive Mesh Refinement (AMR) is adopted to reduce the computational cost. An explicit projection method is used for the time integration and the Finite Difference Method (FDM) is applied on a staggered grid for the discretization of spatial derivatives. The Volume of Fluid (VOF) method with Piecewise-Linear Interface Calculation (PLIC) is extended to the AMR grid to capture the gas-water interface accurately. A coarse-fine interface treatment method is developed to preserve the flux conservation at the interfaces. Several two-dimensional More >

Displaying 1-10 on page 1 of 62. Per Page