Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    PROCEEDINGS

    Dynamics of Bubble-Particle Interaction at Different Distances Under Ultrasonic Excitation

    Jie Wang1,*, Jingyu Gu1, Shuai Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012184

    Abstract The interaction between the particle and the bubble under the ultrasonic wave excitation plays a pivotal role in various applications such as targeted therapy, ultrasonic cleaning, ultrasonography, and microbubble motors. When the particle is in close proximity or even attached to the bubble, a strong fluid-structure interaction occurs, significantly influencing the particle propulsion. The attachment of the bubble to the particle results in distinct bubble pulsation patterns and particle acceleration mechanisms from the non-contact state. Thus, we propose a fluid-structure interaction model based on the boundary integral method (BIM) to comprehensively consider the distance between More >

  • Open Access

    ARTICLE

    Numerical Predictions of Laminar Forced Convection Heat Transfer with and without Buoyancy Effects from an Isothermal Horizontal Flat Plate to Supercritical Nitrogen

    K. S. Rajendra Prasad1, Sathya Sai2, T. R. Seetharam3, Adithya Garimella1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 889-917, 2024, DOI:10.32604/fhmt.2024.047703 - 11 July 2024

    Abstract Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards. Computations are performed by varying the value of from 5 to 30 K and ratio from 1.1 to 1.5. Variation of all the thermophysical properties of supercritical Nitrogen is considered. The wall temperatures are chosen in such a way that two values of T are less than is the temperature at which the fluid has a maximum value of C for the given pressure), More >

  • Open Access

    ARTICLE

    Analytical and Numerical Methods to Study the MFPT and SR of a Stochastic Tumor-Immune Model

    Ying Zhang1, Wei Li1,*, Guidong Yang1, Snezana Kirin2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2177-2199, 2024, DOI:10.32604/cmes.2023.030728 - 15 December 2023

    Abstract The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model with noise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian white noise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. As follows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPT is obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrence of the tumor from the extinction state to the tumor-present state is more concerned in this paper. A more… More >

  • Open Access

    ARTICLE

    A Calculation Method of Double Strength Reduction for Layered Slope Based on the Reduction of Water Content Intensity

    Feng Shen1,*, Yang Zhao1, Bingyi Li1, Kai Wu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 221-243, 2024, DOI:10.32604/cmes.2023.029159 - 22 September 2023

    Abstract The calculation of the factor of safety (FOS) is an important means of slope evaluation. This paper proposed an improved double strength reduction method (DRM) to analyze the safety of layered slopes. The physical properties of different soil layers of the slopes are different, so the single coefficient strength reduction method (SRM) is not enough to reflect the actual critical state of the slopes. Considering that the water content of the soil in the natural state is the main factor for the strength of the soil, the attenuation law of shear strength of clayey soil… More >

  • Open Access

    PROCEEDINGS

    Numerical Simulation of Multiphase Flow in Subsurface Reservoirs: Existing Challenges and New Treatments

    Shuyu Sun1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09671

    Abstract Two or multiple phases commonly occur as fluid mixture in petroleum industry, where oil, gas and water are often produced and transported together. As a result, petroleum reservoir engineers spent great efforts in the development and production of oil and gas reservoirs by conducting and interpolating the simulation of multiphase flows in porous geological formation. Meanwhile, environmental scientists use subsurface flow and transport models to investigate and compare for example various schemes to inject and store CO2 in subsurface geological formations, such as depleted reservoirs and deep saline aquifers. In this work, we first present… More >

  • Open Access

    PROCEEDINGS

    Experimental and Numerical Methods for Characterizing Thermal Gradient Induced Stress in Elevated Temperature Fatigue Testing

    Guo Li1, Shaochen Bao2, Shuiting Ding3, Zhenlei Li2,*, Liangliang Zuo1, Shuyang Xia1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09927

    Abstract Advanced air-cooling turbine blades are capable of operating above the melting temperature of Nickel-based superalloy, which accordingly withstand complex thermomechanical fatigue loads during service life. This paper considers the problem of realizing gas turbine representative thermal gradients in the elevated temperature fatigue test, while ensuring the thermal gradient induced stress inside the specimens. For this purpose, a novel temperature control device utilizing impingement cooling, which supplies cooling air inside the gauge section and releases toward the inner wall, was constructed in tubular fatigue specimens. A single induction coil was arranged outside the gauge section, providing… More >

  • Open Access

    ARTICLE

    Comparative Analysis for Evaluating Wind Energy Resources Using Intelligent Optimization Algorithms and Numerical Methods

    Musaed Alrashidi*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 491-513, 2023, DOI:10.32604/csse.2023.038628 - 26 May 2023

    Abstract Statistical distributions are used to model wind speed, and the two-parameters Weibull distribution has proven its effectiveness at characterizing wind speed. Accurate estimation of Weibull parameters, the scale (c) and shape (k), is crucial in describing the actual wind speed data and evaluating the wind energy potential. Therefore, this study compares the most common conventional numerical (CN) estimation methods and the recent intelligent optimization algorithms (IOA) to show how precise estimation of c and k affects the wind energy resource assessments. In addition, this study conducts technical and economic feasibility studies for five sites in the northern… More >

  • Open Access

    ARTICLE

    Numerical Analysis for the Effect of Irresponsible Immigrants on HIV/AIDS Dynamics

    Muhammad Tariq Ali1, Dumitru Baleanu2,3,4, Muhammad Rafiq5, Jan Awrejcewicz6, Nauman Ahmed7, Ali Raza8,*, Muhammad Sajid Iqbal9, Muhammad Ozair Ahmad7

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1479-1496, 2023, DOI:10.32604/iasc.2023.033157 - 05 January 2023

    Abstract The human immunodeficiency viruses are two species of Lentivirus that infect humans. Over time, they cause acquired immunodeficiency syndrome, a condition in which progressive immune system failure allows life-threatening opportunistic infections and cancers to thrive. Human immunodeficiency virus infection came from a type of chimpanzee in Central Africa. Studies show that immunodeficiency viruses may have jumped from chimpanzees to humans as far back as the late 1800s. Over decades, human immunodeficiency viruses slowly spread across Africa and later into other parts of the world. The Susceptible-Infected-Recovered (SIR) models are significant in studying disease dynamics. In… More >

  • Open Access

    ARTICLE

    An Approximate Numerical Methods for Mathematical and Physical Studies for Covid-19 Models

    Hammad Alotaibi, Khaled A. Gepreel, Mohamed S. Mohamed, Amr M. S. Mahdy*

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1147-1163, 2022, DOI:10.32604/csse.2022.020869 - 08 February 2022

    Abstract The advancement in numerical models of serious resistant illnesses is a key research territory in different fields including the nature and the study of disease transmission. One of the aims of these models is to comprehend the elements of conduction of these infections. For the new strain of Covid-19 (Coronavirus), there has been no immunization to protect individuals from the virus and to forestall its spread so far. All things being equal, control procedures related to medical services, for example, social distancing or separation, isolation, and travel limitations can be adjusted to control this pandemic.… More >

  • Open Access

    ARTICLE

    Structure Preserving Algorithm for Fractional Order Mathematical Model of COVID-19

    Zafar Iqbal1,2, Muhammad Aziz-ur Rehman1, Nauman Ahmed1,2, Ali Raza3,4, Muhammad Rafiq5, Ilyas Khan6,*, Kottakkaran Sooppy Nisar7

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2141-2157, 2022, DOI:10.32604/cmc.2022.013906 - 07 December 2021

    Abstract In this article, a brief biological structure and some basic properties of COVID-19 are described. A classical integer order model is modified and converted into a fractional order model with as order of the fractional derivative. Moreover, a valued structure preserving the numerical design, coined as Grunwald–Letnikov non-standard finite difference scheme, is developed for the fractional COVID-19 model. Taking into account the importance of the positivity and boundedness of the state variables, some productive results have been proved to ensure these essential features. Stability of the model at a corona free and a corona existing More >

Displaying 1-10 on page 1 of 29. Per Page