Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Two-Machine Hybrid Flow-Shop Problems in Shared Manufacturing

    Qi Wei*, Yong Wu

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 1125-1146, 2022, DOI:10.32604/cmes.2022.019754 - 14 March 2022

    Abstract In the “shared manufacturing” environment, based on fairness, shared manufacturing platforms often require manufacturing service enterprises to arrange production according to the principle of “order first, finish first” which leads to a series of scheduling problems with fixed processing sequences. In this paper, two two-machine hybrid flow-shop problems with fixed processing sequences are studied. Each job has two tasks. The first task is flexible, which can be processed on either of the two machines, and the second task must be processed on the second machine after the first task is completed. We consider two objective… More >

  • Open Access

    ARTICLE

    Numerical Experiments of a Benchmark Hull Based on a Turbulent Free-surface Flow Model

    Feng Zhao1, Song-Ping Zhu2, Zhi-Rong Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.3, pp. 273-286, 2005, DOI:10.3970/cmes.2005.009.273

    Abstract In this paper, the steady viscous flow around a ship hull with free surface is studied through solving Reynolds Averaged Navier-Stokes (RANS) equations numerically. The RANS solver is based on a cell-centered finite-volume discretization. In our study, the turbulence is modeled through an SST (Shear Stress Transport) k - ω turbulence model in conjunction with the wall function approach for the near-wall simulation. The VOF method is used for the free surface treatment. Calculations for two typical benchmark surface ship models, Wigley and DTMB 5415, are carried out first for the purpose of model validation. The… More >

Displaying 1-10 on page 1 of 2. Per Page