Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Optimization of a Perforator Nozzle Based on the Constant Velocity of Jet Core

    Aihua Tao1, Chao Li1, Zhijun Jie1, Yong Zhang1, Xing Chen1, Weili Liu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 645-656, 2025, DOI:10.32604/fdmp.2025.059545 - 01 April 2025

    Abstract Hydraulic sandblasting perforation plays a crucial role in the fracturing and reconstruction of unconventional oil and gas reservoirs. The jet nozzle is an essential part of the hydraulic perforation tool. Insufficient penetration depth, caused by excessive jet distances, presents challenges during the perforation process. To overcome this, an optimization design of the nozzle structure is required to enhance the perforation efficiency. In this paper, a computational fluid-dynamic model for conical-cylindrical nozzles has been elaborated. To further improve the rock-breaking efficiency of the jet nozzle, a fillet design is introduced at the nozzle inlet section. The… More >

  • Open Access

    ARTICLE

    Jet Characteristics and Optimization of a Cavitation Nozzle for Hydraulic Fracturing Applications

    Yu Gao1, Zhenqiang Xu2,3,*, Kaixiang Shen2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 179-192, 2024, DOI:10.32604/fdmp.2023.030499 - 08 November 2023

    Abstract Hydraulic jetting is a form of fracturing that involves using a high-pressure jet of water to create fractures in the reservoir rock with a nozzle serving as the central component of the hydraulic sandblasting perforation tool. In this study, the flow behavior of the nozzle is simulated numerically in the framework of a SST k-ω turbulence model. The results show that the nozzle structure can significantly influence the jet performance and related cavitation effect. Through orthogonal experiments, the nozzle geometric parameters are optimized, and the following configuration is found accordingly: contraction angle 20°, contraction segment More >

Displaying 1-10 on page 1 of 2. Per Page