Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    Impact of Shockwave on Condensation Efficiency of Supersonic Nozzle during Natural Gas Purification

    Lei Zhao1, Lihui Ma2, Junwen Chen3, Pan Zhang2, Jiang Bian4,*, Dong Sun2

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070290 - 27 January 2026

    Abstract Shock waves in the nozzle during supersonic separation under different conditions can disrupt the flow field’s thermodynamic equilibrium. While it contributes to the recovery of pressure energy, it also leads to the dissipation of mechanical energy. This study aimed to investigate the effects of changes in back pressure on the shock wave position and its subsequent impact on the refrigeration performance of nozzles. A mathematical model for the supersonic gas in a nozzle was established and evaluated via experiments. The results show that when the back pressure is less than 0.2 MPa, no shock wave… More >

  • Open Access

    ARTICLE

    Structural Optimization of Nozzles for Gas-Liquid Two-Phase Jets

    Fengxia Shi1, Jian Zhao2,3,*, Xiaodong Dai1, Guoxin Zhang4, Yuan Lu4, Yuyan Shang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2963-2980, 2025, DOI:10.32604/fdmp.2025.073836 - 31 December 2025

    Abstract Gas–liquid two-phase jets exhibit markedly enhanced impact performance due to the violent collapse of entrained bubbles, which generates transient microjets and shock waves. The geometry of the nozzle is a decisive factor in controlling jet formation, flow modulation, and impact efficiency. In this work, the structural optimization of gas–liquid two-phase nozzles was investigated numerically using the Volume of Fluid (VOF). Simulation results show that the aero-shaped nozzle delivers a significantly stronger impact on the target surface than conventional geometries. Specifically, its impact pressure is 21% higher than that of a conical straight nozzle and 37%… More > Graphic Abstract

    Structural Optimization of Nozzles for Gas-Liquid Two-Phase Jets

  • Open Access

    ARTICLE

    Jet Pump Structural Optimization through CFD Analysis and Experimental Validation

    Zhengqiang Peng1,*, Rendong Feng1, Fang Han1, Jing Guo1, Shen Chi1, Wenao Huang1, Jie Luo2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2945-2961, 2025, DOI:10.32604/fdmp.2025.073281 - 31 December 2025

    Abstract Jet pumps often suffer from efficiency losses due to the intense mixing of power and suction fluids, which leads to significant kinetic energy dissipation. Enhancing the efficiency of such pumps requires careful optimization of their structural parameters. In this study, a computational fluid dynamics (CFD) model of a hydraulic jet sand-flushing pump is developed to investigate the effects of throat-to-nozzle distance, area ratio, and throat length on the pump’s sand-carrying performance. An orthogonal experimental design is employed to optimize the structural parameters, while the influence of sand characteristics on pumping performance is systematically evaluated. Complementary… More >

  • Open Access

    ARTICLE

    Influence of Nozzle Geometry and Operating Parameters on High-Pressure Water Jets

    Yuxin Wang1, Youjiang Wang2, Jieping Wang2, Chao Zhang1,*, Fanguang Meng3, Linhua Zhang1, Yongxing Song1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2761-2777, 2025, DOI:10.32604/fdmp.2025.072236 - 01 December 2025

    Abstract High-pressure water jet technology has emerged as a highly effective method for removing industrial-scale deposits from pipelines, offering a clean, efficient, and environmentally sustainable alternative to conventional mechanical or chemical cleaning techniques. Among the many parameters influencing its performance, the geometry of the nozzle plays a decisive role in governing jet coherence, impact pressure distribution, and overall cleaning efficiency. In this study, a comprehensive numerical and experimental investigation is conducted to elucidate the influence of nozzle geometry on the behavior of high-pressure water jets. Using Computational Fluid Dynamics (CFD) simulations based on the Volume of… More >

  • Open Access

    ARTICLE

    Experimental Investigation into a Superheated Water Jet in Visible and InfraRed Ranges

    Konstantin Busov1,*, Nikolay Mazheiko1, Leonid Plotnikov2, Boris Zhilkin2

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1203-1214, 2025, DOI:10.32604/fhmt.2025.067598 - 29 August 2025

    Abstract Experimental research into the boiling-up of a free jet of superheated water discharging through a short cylindrical nozzle with sharp inlet and outlet edges into the atmosphere has been carried out. The change in the shape of a liquid jet has been traced through changes in thermodynamic parameters (temperature, pressure) along the saturation line in both the visible range and the infrared spectrum. The flow shapes corresponding to various modes of boiling-up have been identified. With thermal-imaging diagnostics, heterogeneities in the spray plume of a superheated liquid jet have been recorded and temperature distributions have More >

  • Open Access

    ARTICLE

    Performance of an Electro-Optic-Liquid Coupling Nozzle with a Multi-Jet Focusing Structure

    Xiaozong Song*, Jiangbin Liu, Longhua Fei, Wencong Zhang

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1379-1396, 2025, DOI:10.32604/fdmp.2025.061222 - 30 June 2025

    Abstract Ultra-precision components have been widely used to produce advanced optoelectronic equipment. The so-called Electric field enhanced UltraViolet-Induced Jet Machining (EUV-INCJM) is an ultra-precision method that can achieve sub-nanometer level surface quality polishing. This study focuses on the application of the EUV-INCJM with different nozzle structures to a single-crystal of silicon. Two kinds of electro-optic-liquid coupling nozzles with single-jet and multi-jet focusing structures are proposed accordingly. Simulations and experiments have been conducted to verify the material removal performance of these nozzles. The simulation results show that, under the same condition, the flow velocity of the single-jet… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Dual Atomizing Nozzle Jets in a Waste Warehouse

    Yan Xiong1, Xiangnan Song1, Jiawei Lu1, Lei Liu2, Yaru Yan3, Xuemin Ye3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1063-1077, 2025, DOI:10.32604/fdmp.2025.063769 - 30 May 2025

    Abstract Enhancing the fermentation efficiency of waste in waste warehouses is pivotal for accelerating the pyrolysis process and minimizing harmful gas emissions. This study proposes an integrated approach, combining hot air injection with dual atomizing nozzles, for the thermal treatment of waste piles. Numerical simulations are employed to investigate the influence of various parameters, namely, nozzle height, nozzle tilt angle, inlet air velocity and air temperature, on the droplet diffusion process, spread area, droplet temperature, and droplet size distribution. The results show that reducing the nozzle height increases the temperature of droplets upon their deposition on… More > Graphic Abstract

    Numerical Analysis of Dual Atomizing Nozzle Jets in a Waste Warehouse

  • Open Access

    ARTICLE

    Optimization of a Perforator Nozzle Based on the Constant Velocity of Jet Core

    Aihua Tao1, Chao Li1, Zhijun Jie1, Yong Zhang1, Xing Chen1, Weili Liu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 645-656, 2025, DOI:10.32604/fdmp.2025.059545 - 01 April 2025

    Abstract Hydraulic sandblasting perforation plays a crucial role in the fracturing and reconstruction of unconventional oil and gas reservoirs. The jet nozzle is an essential part of the hydraulic perforation tool. Insufficient penetration depth, caused by excessive jet distances, presents challenges during the perforation process. To overcome this, an optimization design of the nozzle structure is required to enhance the perforation efficiency. In this paper, a computational fluid-dynamic model for conical-cylindrical nozzles has been elaborated. To further improve the rock-breaking efficiency of the jet nozzle, a fillet design is introduced at the nozzle inlet section. The… More >

  • Open Access

    ARTICLE

    Simulation Study on the Heat Transfer Characteristics of a Spray-Cooled Single-Pipe Cooling Tower

    Kaiyong Hu1,2,*, Zhaoyi Chen1, Yunqing Hu1, Huan Sun1, Zhili Sun1, Tonghua Zou1,3, Jinghong Ning1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2109-2126, 2024, DOI:10.32604/fdmp.2024.050773 - 23 August 2024

    Abstract The current study focuses on spray cooling applied to the heat exchange components of a cooling tower. An optimization of such processes is attempted by assessing different spray flow rates and droplet sizes. For simplicity, the heat exchanger of the cooling tower is modeled as a horizontal round tube and a cooling tower spray cooling model is developed accordingly using a computational fluid dynamics (CFD) software. The study examines the influence of varying spray flow rates and droplet sizes on the heat flow intensity between the liquid layer on the surface of the cylindrical tube… More > Graphic Abstract

    Simulation Study on the Heat Transfer Characteristics of a Spray-Cooled Single-Pipe Cooling Tower

  • Open Access

    ARTICLE

    Base Pressure Control with Semi-Circular Ribs at Critical Mach Number

    Ambareen Khan1, Sher Afghan Khan2, Mohammed Nishat Akhtar1,*, Abdul Aabid3,*, Muneer Baig3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2007-2028, 2024, DOI:10.32604/fdmp.2024.049368 - 23 August 2024

    Abstract When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles, rockets, and aeroplanes, the base pressure control is activated. Controlling the base pressure and drag is necessary in both scenarios. In this work, semi-circular ribs with varying diameters (2, 4, and 6 mm) positioned at six distinct positions (0.5D, 1D, 1.5D, 2D, 3D, and 4D) inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique. In-depth research is done on optimising rib size for various More > Graphic Abstract

    Base Pressure Control with Semi-Circular Ribs at Critical Mach Number

Displaying 1-10 on page 1 of 49. Per Page