Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

    R. Madan Kumar1, R. Srinivasa Raju2, F. Mebarek-Oudina3,*, M. Anil Kumar4, V. K. Narla2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 15-34, 2024, DOI:10.32604/fhmt.2024.048045 - 21 March 2024

    Abstract The primary aim of this research endeavor is to examine the characteristics of magnetohydrodynamic Williamson nanofluid flow past a nonlinear stretching surface that is immersed in a permeable medium. In the current analysis, the impacts of Soret and Dufour (cross-diffusion effects) have been attentively taken into consideration. Using appropriate similarity variable transformations, the governing nonlinear partial differential equations were altered into nonlinear ordinary differential equations and then solved numerically using the Runge Kutta Fehlberg-45 method along with the shooting technique. Numerical simulations were then perceived to show the consequence of various physical parameters on the… More > Graphic Abstract

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

  • Open Access

    ARTICLE

    Influence of Thermophoresis and Brownian Motion of Nanoparticles on Radiative Chemically-Reacting MHD Hiemenz Flow over a Nonlinear Stretching Sheet with Heat Generation

    S. Mohammed Ibrahim1, P. Vijaya Kumar2, G. Lorenzini3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 855-868, 2023, DOI:10.32604/fdmp.2022.019796 - 02 November 2022

    Abstract In this study, a radiative MHD stagnation point flow over a nonlinear stretching sheet incorporating thermophoresis and Brownian motion is considered. Using a similarity method to reshape the underlying Partial differential equations into a set of ordinary differential equations (ODEs), the implications of heat generation, and chemical reaction on the flow field are described in detail. Moreover a Homotopy analysis method (HAM) is used to interpret the related mechanisms. It is found that an increase in the magnetic and velocity exponent parameters can damp the fluid velocity, while thermophoresis and Brownian motion promote specific thermal More >

  • Open Access

    ARTICLE

    MICROPOLAR FLUID FLOW OVER A NONLINEAR STRETCHING CONVECTIVELY HEATED VERTICAL SURFACE IN THE PRESENCE OF CATTANEO-CHRISTOV HEAT FLUX AND VISCOUS DISSIPATION

    Machireddy Gnaneswara Reddya,*, Gorla Rama Subba Reddyb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.20

    Abstract The objective of the present communication is to study the problem of micropolar fluid flow with temperature dependent thermal conductivity over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model and Joule heating effects are properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton’s methods are More >

  • Open Access

    ARTICLE

    NONLINEAR RADIATIVE HEAT TRANSFER TO CARREAU FLUID OVER A NONLINEAR STRETCHING SHEET IN A POROUS MEDIUM IN THE PRESENCE OF NON-UNIFORM HEAT SOURCE/SINK AND VISCOUS DISSIPATION

    M. Umeshaiah1 , M. R. Krishnamurthy2 , N.G. Rudraswamy3 , B. J. Gireesha4, B.C. Prasannakumara5,*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.4

    Abstract This article presents the effect of nonlinear thermal radiation on boundary layer flow and heat transfer of Carreau fluid model over a nonlinear stretching sheet embedded in a porous medium in the presence of non-uniform heat source/sink and viscous dissipation with convective boundary condition. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations using similarity transformation, which is then solved numerically by the fourth-fifth order Runge–Kutta-Fehlberg integration scheme featuring a shooting technique. The influence of significant parameters such as power law index parameter, Stretching parameter, More >

Displaying 1-10 on page 1 of 4. Per Page