Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (495)
  • Open Access

    ARTICLE

    An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process

    Bo Zhu1,#, Enzhi Dong1,#, Zhonghua Cheng1,*, Xianbiao Zhan2, Kexin Jiang1, Rongcai Wang 3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.069194 - 10 November 2025

    Abstract With the increasing complexity of industrial automation, planetary gearboxes play a vital role in large-scale equipment transmission systems, directly impacting operational efficiency and safety. Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment, leading to excessive maintenance costs or potential failure risks. However, existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes. To address these challenges, this study proposes a novel condition-based maintenance framework for planetary gearboxes. A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals, which were then processed using a… More >

  • Open Access

    ARTICLE

    Study of the structural and elastic properties of nonlinear optical material BaGa4S7

    H. J. Houa,*, J. X. Biana, K. J. Liub, W. X. Chena, X. W. Lua, S. R. Zhangc

    Chalcogenide Letters, Vol.22, No.7, pp. 579-591, 2025, DOI:10.15251/CL.2025.227.579

    Abstract Utilizing first-principles method, the structural and anisotropic characteristics of BaGa4S7 has been meticulously investigated. The determined lattice parameters and elastic moduli exhibit a high degree of correlation with previously documented data. Based on its mechanical properties, BaGa4S7 demonstrates ductility and anisotropy. The anisotropic properties can be examined through a range of metrics. More >

  • Open Access

    ARTICLE

    The Plateau Dilemma: Identifying Key Factors of Depression Risk among Middle-Aged and Older Chinese with Chronic Diseases

    Zhe He1, Yaning Zhang2,*

    International Journal of Mental Health Promotion, Vol.27, No.11, pp. 1747-1768, 2025, DOI:10.32604/ijmhp.2025.070491 - 28 November 2025

    Abstract Background: Depression represents a significant global mental health burden, particularly among middle-aged and older Chinese with chronic diseases in high-altitude regions, where harsh environmental conditions and limited social support exacerbate mental health disparities. This paper aims to develop an interpretable machine learning prediction framework to identify the key factors of depression in this vulnerable population, thereby proposing targeted intervention measures. Methods: Utilizing data from the China Health and Retirement Longitudinal Study in 2020, this paper screened out and analyzed 2431 samples. Subsequently, Recursive Feature Elimination and Least Absolute Shrinkage and Selection Operator were applied to screen… More >

  • Open Access

    ARTICLE

    Probabilistic Graphical Model-Based Operational Reliability-Centric Design of Offshore Wind Farm Feeder Layouts

    Qiuyu Lu1, Yunqi Yan2, Yang Liu1, Ying Chen2,*, Yinguo Yang1, Tannan Xiao3, Guobing Wu1

    Energy Engineering, Vol.122, No.12, pp. 4799-4814, 2025, DOI:10.32604/ee.2025.069131 - 27 November 2025

    Abstract The rapid expansion of offshore wind energy necessitates robust and cost-effective electrical collector system (ECS) designs that prioritize lifetime operational reliability. Traditional optimization approaches often simplify reliability considerations or fail to holistically integrate them with economic and technical constraints. This paper introduces a novel, two-stage optimization framework for offshore wind farm (OWF) ECS planning that systematically incorporates reliability. The first stage employs Mixed-Integer Linear Programming (MILP) to determine an optimal radial network topology, considering linearized reliability approximations and geographical constraints. The second stage enhances this design by strategically placing tie-lines using a Mixed-Integer Quadratically Constrained More >

  • Open Access

    ARTICLE

    Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete: Interpreting Nonlinear Synergies among Binder Components and Proportions

    Yassir M. Abbas*, Abdulaziz Alsaif*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1789-1819, 2025, DOI:10.32604/cmes.2025.073088 - 26 November 2025

    Abstract The rapid advancement of three-dimensional printed concrete (3DPC) requires intelligent and interpretable frameworks to optimize mixture design for strength, printability, and sustainability. While machine learning (ML) models have improved predictive accuracy, their limited transparency has hindered their widespread adoption in materials engineering. To overcome this barrier, this study introduces a Random Forests ensemble learning model integrated with SHapley Additive exPlanations (SHAP) and Partial Dependence Plots (PDPs) to model and explain the compressive strength behavior of 3DPC mixtures. Unlike conventional “black-box” models, SHAP quantifies each variable’s contribution to predictions based on cooperative game theory, which enables… More >

  • Open Access

    ARTICLE

    An Analytical Approach for Simulating the Bending of Nanobeams in Thermal Environments Considering the Flexomagnetic Effect

    Do Van Thom1,*, Pham Van Hoan2, Nguyen Huu Phan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1711-1734, 2025, DOI:10.32604/cmes.2025.071187 - 26 November 2025

    Abstract This research utilizes analytical solutions to investigate the issue of nonlinear static bending in nanobeams affected by the flexomagnetic effect. The nanobeams are exposed to mechanical loads and put in a temperature environment. The equilibrium equation of the beam is formulated based on the newly developed higher-order shear deformation theory. The flexomagnetic effect is explained by the presence of the strain gradient component, which also takes into consideration the impact of small-size effects. This study has used a flexible transformation to derive the equilibrium equation for a single variable, which significantly simplifies the process of More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Investigation on the Nonlinear Deformation of Flax Fibre Reinforced Composites Based on the Evolution of Microstructures

    Qian Li*, Jiali Zhou, Yan Li*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.012234

    Abstract Plant fibres are emerging as sustainable composite reinforcements. Compared to synthetic fibres, the hierarchical and twisted structure of plant fibres may produce microfibril angle (MFA) reorientation and untwisting time-varying behaviors after loading and consequently decide the mechanical response of plant fibre reinforced composites (PFRCs) in macro-scale. Existing theories, assuming homogeneous fibres, cannot accurately describe the multi-scale coupling nonlinear deformations of PFRCs. Based on this, a multi-scale analysis method on the nonlinear tensile responses of flax fibre reinforced composites (FFRCs) was proposed, focusing on the effect of the evolution of MFA in micro-scale and twist angle… More >

  • Open Access

    ARTICLE

    Two-Dimensional Mathematical Modeling of Gas Hydrate Dissociation with a Nonlinear Forchheimer-Type Filtration Law

    Ahmed Bakeer1, Grigory Kazakevich2, Viktoriia Podryga3,*, Yury Poveshchenko3, Parvin Rahimly3

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1575-1593, 2025, DOI:10.32604/fhmt.2025.067097 - 31 October 2025

    Abstract The work considers the problem of gas hydrate dissociation in a porous medium using the two-term Forchheimer law, corresponding to high flow rates of reservoir fluids. Such rates can arise during the decomposition of gas hydrates, since a large amount of gas is released. Intensive emissions of gases from the earth’s interior are observed on the ocean floor. They are also associated with a large number of subvertical geological structures under the ocean floor, coming to the surface in the form of local ring funnels (pockmarks). Many similar objects have also been found on land.… More >

  • Open Access

    PROCEEDINGS

    Nonlinear Variation of Chord Modulus of Mild Steel During Cyclic Loading-Unloading at Different Temperatures

    Liwen Guan1, Xiaoteng Wang2,*, Tang Biao2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-4, 2025, DOI:10.32604/icces.2025.012534

    Abstract By using the continuous cyclic loading-unloading tensile test method, the nonlinear variation behavior of the chord modulus of mild steel under different temperature conditions was systematically investigated, and the corresponding relationship between plastic strain and chord modulus during the cyclic loading-unloading process was clarified. Through the analysis of test data, the variation trends and quantitative corresponding models of plastic strain and chord modulus at different temperatures were established. The research results show that under constant temperature conditions, as the plastic strain increases to 10%, the chord modulus attenuation process presents a significant two-stage characteristic -… More >

  • Open Access

    ARTICLE

    Solving the BBMB Equation in Shallow Water Waves via Space-Time MQ-RBF Collocation

    Hongwei Ma1, Yingqian Tian2,*, Fuzhang Wang3,*, Quanfu Lou4, Lijuan Yu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3419-3432, 2025, DOI:10.32604/cmes.2025.070791 - 30 September 2025

    Abstract This study introduces a novel single-layer meshless method, the space-time collocation method based on multiquadric-radial basis functions (MQ-RBF), for solving the Benjamin-Bona-Mahony-Burgers (BBMB) equation. By reconstructing the time variable as a space variable, this method establishes a combined space-time structure that can eliminate the two-step computational process required in traditional grid methods. By introducing shape parameter-optimized MQ-RBF, high-precision discretization of the nonlinear, dispersive, and dissipative terms in the BBMB equation is achieved. The numerical experiment section validates the effectiveness of the proposed method through three benchmark examples. This method shows significant advantages in computational efficiency, More >

Displaying 1-10 on page 1 of 495. Per Page