Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    NUMERICAL SOLUTIONS FOR A NANOFLUID PAST OVER A STRETCHING CIRCULAR CYLINDER WITH NON-UNIFORM HEAT SOURCE

    A. Rasekha,*, D.D. Ganjib, S. Tavakolib

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-6, 2012, DOI:10.5098/hmt.v3.4.3003

    Abstract The present paper deals with the analysis of boundary layer flow and heat transfer of a nanofluid over a stretching circular cylinder in the presence of non-uniform heat source/sink. The governing system of partial differential equations is converted to ordinary differential equations by using similarity transformations, which are then solved numerically using the Runge–Kutta–Fehlberg method with shooting technique. The solutions for the temperature and nanoparticle concentration distributions depend on six parameters, Prandtl number Pr, Lewis number Le, the Brownian motion parameter Nb, the thermophoresis parameter Nt, and non-uniform heat generation/absorption parameters A*, B*. Numerical results are presented both in tabular… More >

  • Open Access

    ARTICLE

    Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method

    Xiaozhou Xia1, Changsheng Qin1, Guangda Lu2, Xin Gu1,*, Qing Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2257-2276, 2024, DOI:10.32604/cmes.2023.031238

    Abstract Accurate simulation of the cracking process caused by rust expansion of reinforced concrete (RC) structures plays an intuitive role in revealing the corrosion-induced failure mechanism. Considering the quasi-brittle fracture of concrete, the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model. The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load. Then, the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC. The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with… More >

  • Open Access

    ARTICLE

    THE EFFECTS OF THERMAL RADIATION AND NON-UNIFORM HEAT SOURCE/SINK ON STRETCHING SHEET EMBEDDED IN NON-DARCIAN POROUS MEDIUM

    Wubshet Ibrahima,∗, Bandari Shankarb

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.37

    Abstract The Numerical analysis of magneto-hydrodynamics (MHD) boundary layer flow and heat transfer of incompressible, viscous and electrically conducting fluid is presented. The flow is due to continuously stretching permeable surface embedded in non-Darcian porous medium in the presence of transverse magnetic field, thermal radiation and non-uniform heat source/sink. The flow equations in the porous medium are governed by ForchheimerBrinkman extended Darcy model. A similarity transformation is used to transform partial differential equations into a coupled higher order non-linear ordinary differential equations. These equations are solved numerically using implicit finite difference scheme called Keller-Box method. The effects of the governing parameters… More >

  • Open Access

    ARTICLE

    FREE CONVECTIVE HEAT TRANSFER OF MHD DISSIPATIVE CARREAU NANOFLUID FLOW OVER A STRETCHING SHEET

    M. Sathish Kumar, N. Sandeep* , B. Rushi Kumar

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.13

    Abstract Nowadays external magnetic fields are capable of setting the thermal and physical properties of magnetic-nanofluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of magnetic nanofluids and makes it aeolotropic. With this incentive, we investigate the flow and heat transfer of electrically conducting liquid film flow of Carreau nanofluid over a stretching sheet by considering the aligned magnetic field in the presence of space and temperature dependent heat source/sink and viscous dissipation. For this study, we considered kerosene as the base fluid embedded with the silver (Ag) and copper… More >

  • Open Access

    ARTICLE

    NONLINEAR RADIATIVE HEAT TRANSFER TO CARREAU FLUID OVER A NONLINEAR STRETCHING SHEET IN A POROUS MEDIUM IN THE PRESENCE OF NON-UNIFORM HEAT SOURCE/SINK AND VISCOUS DISSIPATION

    M. Umeshaiah1 , M. R. Krishnamurthy2 , N.G. Rudraswamy3 , B. J. Gireesha4, B.C. Prasannakumara5,*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.4

    Abstract This article presents the effect of nonlinear thermal radiation on boundary layer flow and heat transfer of Carreau fluid model over a nonlinear stretching sheet embedded in a porous medium in the presence of non-uniform heat source/sink and viscous dissipation with convective boundary condition. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations using similarity transformation, which is then solved numerically by the fourth-fifth order Runge–Kutta-Fehlberg integration scheme featuring a shooting technique. The influence of significant parameters such as power law index parameter, Stretching parameter, Weissenberg number, permeability parameter, temperature… More >

  • Open Access

    ARTICLE

    MAGNETOHYDRO DYNAMIC FLOW OF BLOOD IN A PERMEABLE INCLINED STRETCHING SURFACE WITH VISCOUS DISSIPATION, NON-UNIFORM HEAT SOURCE/SINK AND CHEMICAL REACTION

    S.R.R. Reddya , P. Bala Anki Reddya,*, S. Suneethab

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-10, 2018, DOI:10.5098/hmt.10.22

    Abstract Present work aims to investigate the blood stream in a permeable vessel in the presence of an external magnetic field with heat and mass transfer. The instability in the coupled flow and temperature fields is considered to be produced due to the time-dependent extending velocity and the surface temperature of the vessel. The non-uniform heat source/sink effects on a chemically responded blood stream and heat viscous. This study is of potential value in the clinical healing of cardiovascular disorders accompanied by accelerated circulation. The problem is treated mathematically by reducing it to a system of joined non-linear differential equations, which… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER INFERENCES ON THE HERSCHEL BULKLEY FLUID FLOW UNDER PERISTALSIS

    G. C. Sankad* , Asha Patil

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.17

    Abstract Heat transfer effect on the flow of Herschel Bulkley fluid moving in a non-uniform channel is analyzed. The peristaltic wall is considered to be coated with a porous lining. The pertinent parameter effects are studied graphically for the analytical solutions of temperature profile, rate of temperature, heat transfer coefficient and mechanical efficiency. The temperature profile, heat transfer coefficient and the rate of temperature decrease with increase in the Darcy number. Thickening of the porous wall coating raises the temperature profile and the rate measure of temperature. Mechanical efficiency is more in a convergent channel than in uniform and divergent channels. More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTION ON NON-UNIFORM MESH OF DARCY-BRINKMAN-FORCHHEIMER MODEL FOR TRANSIENT CONVECTIVE HEAT TRANSFER OVER FLAT PLATE IN SATURATED POROUS MEDIUM

    Elyazid Flilihi, Mohammed Sriti, Driss Achemlal

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-10, 2019, DOI:10.5098/hmt.12.12

    Abstract A numerical investigation is performed to analyze the transient laminar free convection over an isothermal inclined plate embedded in a saturated porous medium with the viscous dissipation effects. The flow in the porous medium is modeled with the Darcy-Brinkman- Forchheimer model, taking into account the convective term. The dimensionless nonlinear partial differential equations are solved numerically using an explicit finite difference method. The effects of different parameters: (1 ≤ Re ≤ 10 ; 10−2 ≤ Da ≤ 10 ; 0 ≤ Gr ≤ 50 ; 0 ≤ F r ≤ 3 ; 0 ≤ Ec ≤ 1 ; 0 ≤… More >

  • Open Access

    ARTICLE

    2D FLOW OF CASSON FLUID WITH NON-UNIFORM HEAT SOURCE/SINK AND JOULE HEATING

    Emran Khoshrouye Ghiasi, Reza Saleh*

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-7, 2019, DOI:10.5098/hmt.12.4

    Abstract In this paper, two-dimensional magnetohydrodynamic (MHD) flow of Casson fluid over a fixed plate under non-uniform heat source/sink and Joule heating is analyzed by the homotopy analysis method (HAM). The governing boundary-layer equations have been reduced to the ordinary differential equations (ODEs) through the similarity variables. The current HAM-series solution is compared and successfully validated by the previous studies. Furthermore, the effects of thermo-physical parameters on the current solution are precisely examined. It is found that the skin friction coefficient and local Nusselt number are greatly affected by the Hartmann number. It can be concluded that employing the Casson fluid… More >

  • Open Access

    ARTICLE

    EFFECTS OF NON-UNIFORM SLOT SUCTION/INJECTION AND CHEMICAL REACTION ON MIXED CONVECTIVE MHD FLOW ALONG A VERTICAL WEDGE EMBEDDED IN A POROUS MEDIUM

    M. Ganapathiraoa,∗ , Ali J. Chamkhab, N. Srinivasa Raoc

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-13, 2019, DOI:10.5098/hmt.13.15

    Abstract In this investigation, our objective is to study the effect of non-uniform slot suction or injection into a steady mixed convective MHD boundary layer flow over a vertical wedge embedded in a porous medium in the presence of chemical reaction. The wall of the wedge is embedded in a uniform porous medium in order to allow possible fluid wall suction or injection. The surface of the wedge is maintained at a variable wall temperature and concentration. The fluid is assumed to be viscous, incompressible and electrically conducting; and the magnetic field is applied transversally in the direction of the flow.… More >

Displaying 1-10 on page 1 of 40. Per Page