Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    An Improved Non-Parametric Method for Multiple Moving Objects Detection in the Markov Random Field

    Qin Wan1,2,*, Xiaolin Zhu1, Yueping Xiao1, Jine Yan1, Guoquan Chen1, Mingui Sun3

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 129-149, 2020, DOI:10.32604/cmes.2020.09397 - 19 June 2020

    Abstract Detecting moving objects in the stationary background is an important problem in visual surveillance systems. However, the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes. In this paper, according to the basic steps of the background subtraction method, a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field. Concretely, the contributions are as follows: 1) A new nonparametric strategy is utilized to model the background, based on an improved kernel density estimation; this approach More >

Displaying 1-10 on page 1 of 1. Per Page