Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Modeling and Analysis of OFDMA-NOMA-RA Protocol Considering Imperfect SIC in Multi-User Uplink WLANs

    Hailing Yang1, Suoping Li1,2,*, Duo Peng2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5273-5294, 2024, DOI:10.32604/cmc.2024.050869 - 20 June 2024

    Abstract To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios, this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access (OFDMA) and non-orthogonal multiple access (NOMA). The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units (RUs), and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency. Based on the protocol designed in this paper, in the case of imperfect successive interference… More >

  • Open Access

    ARTICLE

    Improving Channel Estimation in a NOMA Modulation Environment Based on Ensemble Learning

    Lassaad K. Smirani1, Leila Jamel2,*, Latifah Almuqren2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1315-1337, 2024, DOI:10.32604/cmes.2024.047551 - 20 May 2024

    Abstract This study presents a layered generalization ensemble model for next generation radio mobiles, focusing on supervised channel estimation approaches. Channel estimation typically involves the insertion of pilot symbols with a well-balanced rhythm and suitable layout. The model, called Stacked Generalization for Channel Estimation (SGCE), aims to enhance channel estimation performance by eliminating pilot insertion and improving throughput. The SGCE model incorporates six machine learning methods: random forest (RF), gradient boosting machine (GB), light gradient boosting machine (LGBM), support vector regression (SVR), extremely randomized tree (ERT), and extreme gradient boosting (XGB). By generating meta-data from five… More >

  • Open Access

    ARTICLE

    An Efficient Stacked-LSTM Based User Clustering for 5G NOMA Systems

    S. Prabha Kumaresan1, Chee Keong Tan2,*, Yin Hoe Ng1

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 6119-6140, 2022, DOI:10.32604/cmc.2022.027223 - 21 April 2022

    Abstract Non-orthogonal multiple access (NOMA) has been a key enabling technology for the fifth generation (5G) cellular networks. Based on the NOMA principle, a traditional neural network has been implemented for user clustering (UC) to maximize the NOMA system’s throughput performance by considering that each sample is independent of the prior and the subsequent ones. Consequently, the prediction of UC for the future ones is based on the current clustering information, which is never used again due to the lack of memory of the network. Therefore, to relate the input features of NOMA users and capture… More >

  • Open Access

    ARTICLE

    PTS-PAPR Reduction Technique for 5G Advanced Waveforms Using BFO Algorithm

    Arun Kumar1, Manoj Gupta1, Dac-Nhuong Le2,3,*, Ayman A. Aly4

    Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 713-722, 2021, DOI:10.32604/iasc.2021.015793 - 01 March 2021

    Abstract Non-orthogonal multiple access (NOMA) will play an imperative part in an advanced 5G radio arrangement, owing to its numerous benefits such as improved spectrum adeptness, fast data rate, truncated spectrum leakage, and, so on. So far, NOMA undergoes from peak to average power ratio (PAPR) problem, which shrinks the throughput of the scheme. In this article, we propose a hybrid method, centered on the combination of advanced Partial transmission sequence (PTS), Selective mapping (SLM), and bacteria foraging optimization (BFO), known as PTS-BFO and SLM-PTS. PTS and SLM are utilized at the sender side and divide More >

  • Open Access

    ARTICLE

    Performance Analysis of Intelligent CR-NOMA Model for Industrial IoT Communications

    Yinghua Zhang1,2, Jian Liu1, Yunfeng Peng1, Yanfang Dong2, Changming Zhao3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 239-257, 2020, DOI:10.32604/cmes.2020.010778 - 18 September 2020

    Abstract Aiming for ultra-reliable low-latency wireless communications required in industrial internet of things (IIoT) applications, this paper studies a simple cognitive radio non-orthogonal multiple access (CR-NOMA) downlink system. This system consists of two secondary users (SUs) dynamically interfered by the primary user (PU), and its performance is characterized by the outage probability of the SU communications. This outage probability is calculated under two conditions where, a) the transmission of PU starts after the channel state information (CSI) is acquired, so the base station (BS) is oblivious of the interference, and b) when the BS is aware… More >

Displaying 1-10 on page 1 of 5. Per Page