Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Natural Convection of a Power-Law Nanofluid in a Square Cavity with a Vertical Fin

    Amira M’hadbi1,2,*, Mohammed El Ganaoui1, Haïkel Ben Hamed3, Amenallah Guizani2, Khalid Chtaibi3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2091-2108, 2024, DOI:10.32604/fdmp.2024.050763 - 23 August 2024

    Abstract The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically. In particular, the impact of nanofluids, composed of water and Al₂O₃, TiO₂, and Cu nanoparticles, on heat transfer enhancement is examined. The aim of this research is also to analyze the influence of different parameters, including the Rayleigh number (Ra = 104 − 106), nanoparticle volume fraction (φ = 0% − 20%), non-Newtonian power-law indexes (n = 0.6 − 1.4), and fin dimensions (Ar = 0.3, 0.5, and 0.7). Streamlines and isotherms are used to… More > Graphic Abstract

    Natural Convection of a Power-Law Nanofluid in a Square Cavity with a Vertical Fin

  • Open Access

    ARTICLE

    Prediction and Output Estimation of Pattern Moving in Non-Newtonian Mechanical Systems Based on Probability Density Evolution

    Cheng Han1,*, Zhengguang Xu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 515-536, 2024, DOI:10.32604/cmes.2023.043464 - 30 December 2023

    Abstract A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems, assuming that the system satisfies the generalized Lipschitz condition. As a complex nonlinear system primarily governed by statistical laws rather than Newtonian mechanics, the output of non-Newtonian mechanics systems is difficult to describe through deterministic variables such as state variables, which poses difficulties in predicting and estimating the system’s output. In this article, the temporal variation of the system is described by constructing pattern category variables, which are non-deterministic variables.… More >

  • Open Access

    ARTICLE

    Lubrication of Asymmetric Rollers Using Roelands Viscosity–Pressure-Temperature Relationship

    Swetha Lanka1, Venkata Subrahmanyam Sajja1,*, Dhaneshwar Prasad2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 385-405, 2023, DOI:10.32604/fhmt.2023.042544 - 30 November 2023

    Abstract An attempt is made to analyse some lubrication characteristics of rigid cylindrical asymmetric rollers under adiabatic and isothermal boundaries with rolling and sliding motion lubricated by a non-Newtonian incompressible Bingham plastic fluid under the behaviour of line contact. Here the lower surface is considered to move quicker than that of the upper surface; and the Roelands viscosity model is considered and assumed to depend upon the fluid pressure and the mean film temperature. The governing equations for fluid flow such as equations of motion with continuity and the momentum energy equation are solved using Runge-Kutta More >

  • Open Access

    ARTICLE

    Application of Smoothed Particle Hydrodynamics (SPH) for the Simulation of Flow-Like Landslides on 3D Terrains

    Binghui Cui1,*, Liaojun Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 357-376, 2023, DOI:10.32604/cmes.2022.022309 - 29 September 2022

    Abstract Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities, long jump distances, and poor predictability. Simulation of its propagation process can provide solutions for risk assessment and mitigation design. The smoothed particle hydrodynamics (SPH) method has been successfully applied to the simulation of two-dimensional (2D) and three-dimensional (3D) flow-like landslides. However, the influence of boundary resistance on the whole process of landslide failure is rarely discussed. In this study, a boundary condition considering friction is proposed and integrated into the SPH method, and its accuracy is verified. Moreover, the… More > Graphic Abstract

    Application of Smoothed Particle Hydrodynamics (SPH) for the Simulation of Flow-Like Landslides on 3D Terrains

  • Open Access

    REVIEW

    Numerical Analysis of the Mixed Flow of a Non-Newtonian Fluid over a Stretching Sheet with Thermal Radiation

    Nourhan I. Ghoneim1,*, Ahmed M. Megahed2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 407-419, 2023, DOI:10.32604/fdmp.2022.020508 - 29 August 2022

    Abstract A mathematical model is elaborated for the laminar flow of an Eyring-Powell fluid over a stretching sheet. The considered non-Newtonian fluid has Prandtl number larger than one. The effects of variable fluid properties and heat generation/absorption are also discussed. The balance equations for fluid flow are reduced to a set of ordinary differential equations through a similarity transformation and solved numerically using a Chebyshev spectral scheme. The effect of various parameters on the rate of heat transfer in the thermal boundary regime is investigated, i.e., thermal conductivity, the heat generation/absorption ratio and the mixed convection More >

  • Open Access

    ARTICLE

    Numerical Analysis of Blood Flow through COVID-19 Infected Arteries

    Anupam Krishnan1, Anjana P. Anantharaman2,*

    Molecular & Cellular Biomechanics, Vol.19, No.2, pp. 77-88, 2022, DOI:10.32604/mcb.2022.018369 - 25 March 2022

    Abstract Computational Fluid Dynamics has become relevant in the study of hemodynamics, where clinical results are challenging to obtain. This paper discusses a 2-Dimensional transient blood flow analysis through an arterial bifurcation for patients infected with the Coronavirus. The geometry considered is an arterial bifurcation with main stem diameter 3 mm and two outlets. The left outlet (smaller) has a diameter of 1.5 mm and the right outlet (larger), 2 mm. The length of the main stem, left branch and right branch are fixed at 35 mm, 20 mm and 25 mm respectively. Viscosity change that… More >

  • Open Access

    ARTICLE

    SQUEEZE FILM LUBRICATION OF ASYMMETRIC ROLLERS BY BINGHAM PLASTIC FLUID

    Revathi Gadamsettya,*,† , Venkata Subrahmanyam Sajjab, P. Sudam Sekharc, Dhaneshwar Prasadd

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-6, 2021, DOI:10.5098/hmt.16.7

    Abstract An attempt has been made to investigate hydrodynamic lubrication characteristics of asymmetric roller bearings lubricated by thin fluid film under the operating behavior of line contact for a heavily loaded rigid system for normal squeezing motion with cavitation points. The lubricant follows non-Newtonian incompressible Bingham plastic fluid model where the fluid viscosity is supposed to vary with hydrodynamic pressure . The equations which govern the fluid flow such as continuity and momentum equation are solved first analytically and later numerically using MATLAB. The numerical results are achieved for the velocity, pressure, load, and traction forces More >

  • Open Access

    ARTICLE

    Analysis of Convective Transport of Temperature-Dependent Viscosity for Non-Newtonian Erying Powell Fluid: A Numerical Approach

    Ahlam Aljabali1, Abdul Rahman Mohd Kasim1,*, Nur Syamilah Arifin2, Sharena Mohamad Isa3, Noor Amalina Nisa Ariffin1

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 675-689, 2021, DOI:10.32604/cmc.2020.012334 - 30 October 2020

    Abstract Non-Newtonian is a type of fluid that does not comply with the viscosity under the Law of Newton and is being widely used in industrial applications. These include those related to chemical industries, cosmetics manufacturing, pharmaceutical field, food processing, as well as oil and gas activities. The inability of the conventional equations of Navier–Stokes to accurately depict rheological behavior for certain fluids led to an emergence study for non-Newtonian fluids’ models. In line with this, a mathematical model of forced convective flow on non-Newtonian Eyring Powell fluid under temperature-dependent viscosity (TDV) circumstance is formulated. The… More >

  • Open Access

    ARTICLE

    Mixed Convection of Non-Newtonian Erying Powell Fluid with TemperatureDependent Viscosity over a Vertically Stretched Surface

    Ahlam Aljabali1, Abdul Rahman Mohd Kasim1,*, Nur Syamilah Arifin2, Sharena Mohamad Isa3

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 421-435, 2021, DOI:10.32604/cmc.2020.012322 - 30 October 2020

    Abstract The viscosity of a substance or material is intensely influenced by the temperature, especially in the field of lubricant engineering where the changeable temperature is well executed. In this paper, the problem of temperature-dependent viscosity on mixed convection flow of Eyring Powell fluid was studied together with Newtonian heating thermal boundary condition. The flow was assumed to move over a vertical stretching sheet. The model of the problem, which is in partial differential equations, was first transformed to ordinary differential equations using appropriate transformations. This approach was considered to reduce the complexity of the equations. More >

  • Open Access

    ARTICLE

    ROLE OF MAXWELL VELOCITY AND SMOLUCHOWSKI TEMPERATURE JUMP SLIP BOUNDARY CONDITIONS TO NON-NEWTONIAN CARREAU FLUID

    T. Sajid , M. Sagheer, S. Hussain

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-12, 2020, DOI:10.5098/hmt.14.28

    Abstract The forthright aim of this correspondence is to examine the conduct of MHD, viscous dissipation and Joule heating on three dimensional nonNewtonian Carreau fluid flow over a linear stretching surface. Impact of non-linear Rosseland thermal radiation and homogenous/heterogenous reaction process have been also considered to examine the heat and mass transfer process during fluid flow. The velocity and thermal slip effect at the surface have also been scrutinized in detail. By utilizing a suitable transformation, the modelled partial differential equations (PDEs) are renovated into ordinary differential equations (ODEs) and furthermore solved with the help of… More >

Displaying 1-10 on page 1 of 39. Per Page