Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Scale Invariant Feature Transform with Crow Optimization for Breast Cancer Detection

    A. Selvi*, S. Thilagamani

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2973-2987, 2023, DOI:10.32604/iasc.2022.029850 - 15 March 2023

    Abstract Mammography is considered a significant image for accurate breast cancer detection. Content-based image retrieval (CBIR) contributes to classifying the query mammography image and retrieves similar mammographic images from the database. This CBIR system helps a physician to give better treatment. Local features must be described with the input images to retrieve similar images. Existing methods are inefficient and inaccurate by failing in local features analysis. Hence, efficient digital mammography image retrieval needs to be implemented. This paper proposed reliable recovery of the mammographic image from the database, which requires the removal of noise using Kalman More >

  • Open Access

    ARTICLE

    Salp Swarm Algorithm with Multilevel Thresholding Based Brain Tumor Segmentation Model

    Hanan T. Halawani*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6775-6788, 2023, DOI:10.32604/cmc.2023.030814 - 28 December 2022

    Abstract Biomedical image processing acts as an essential part of several medical applications in supporting computer aided disease diagnosis. Magnetic Resonance Image (MRI) is a commonly utilized imaging tool used to save glioma for clinical examination. Biomedical image segmentation plays a vital role in healthcare decision making process which also helps to identify the affected regions in the MRI. Though numerous segmentation models are available in the literature, it is still needed to develop effective segmentation models for BT. This study develops a salp swarm algorithm with multi-level thresholding based brain tumor segmentation (SSAMLT-BTS) model. The… More >

  • Open Access

    ARTICLE

    Automated Artificial Intelligence Empowered Colorectal Cancer Detection and Classification Model

    Mahmoud Ragab1,2,3,*, Ashwag Albukhari2,4

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5577-5591, 2022, DOI:10.32604/cmc.2022.026715 - 21 April 2022

    Abstract Colorectal cancer is one of the most commonly diagnosed cancers and it develops in the colon region of large intestine. The histopathologist generally investigates the colon biopsy at the time of colonoscopy or surgery. Early detection of colorectal cancer is helpful to maintain the concept of accumulating cancer cells. In medical practices, histopathological investigation of tissue specimens generally takes place in a conventional way, whereas automated tools that use Artificial Intelligence (AI) techniques can produce effective results in disease detection performance. In this background, the current study presents an Automated AI-empowered Colorectal Cancer Detection and… More >

  • Open Access

    ARTICLE

    Multiquadric Radial Basis Function Approximation Scheme for Solution of Total Variation Based Multiplicative Noise Removal Model

    Mushtaq Ahmad Khan1,*, Ahmed B. Altamimi2, Zawar Hussain Khan3, Khurram Shehzad Khattak3, Sahib Khan4,*, Asmat Ullah3, Murtaza Ali1

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 55-88, 2021, DOI:10.32604/cmes.2021.011163 - 22 December 2020

    Abstract This article introduces a fast meshless algorithm for the numerical solution nonlinear partial differential equations (PDE) by Radial Basis Functions (RBFs) approximation connected with the Total Variation (TV)-based minimization functional and to show its application to image denoising containing multiplicative noise. These capabilities used within the proposed algorithm have not only the quality of image denoising, edge preservation but also the property of minimization of staircase effect which results in blocky effects in the images. It is worth mentioning that the recommended method can be easily employed for nonlinear problems due to the lack of More >

  • Open Access

    ARTICLE

    Mixed Noise Removal by Residual Learning of Deep CNN

    Kang Yang1, Jielin Jiang1,2,*, Zhaoqing Pan1,2

    Journal of New Media, Vol.2, No.1, pp. 1-10, 2020, DOI:10.32604/jnm.2020.09356 - 14 August 2020

    Abstract Due to the huge difference of noise distribution, the result of a mixture of multiple noises becomes very complicated. Under normal circumstances, the most common type of mixed noise is to add impulse noise (IN) and then white Gaussian noise (AWGN). From the reduction of cascaded IN and AWGN to the latest sparse representation, a great deal of methods has been proposed to reduce this form of mixed noise. However, when the mixed noise is very strong, most methods often produce a lot of artifacts. In order to solve the above problems, we propose More >

  • Open Access

    ARTICLE

    Statistical Analysis and Multimodal Classification on Noisy Eye Tracker and Application Log Data of Children with Autism and ADHD

    Mahiye Uluyagmur Ozturka, Ayse Rodopman Armanb, Gresa Carkaxhiu Bulutc, Onur Tugce Poyraz Findikb, Sultan Seval Yilmazd, Herdem Aslan Gencb, M. Yanki Yazgane,f, Umut Tekera, Zehra Cataltepea

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 891-905, 2018, DOI:10.31209/2018.100000058

    Abstract Emotion recognition behavior and performance may vary between people with major neurodevelopmental disorders such as Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD) and control groups. It is crucial to identify these differences for early diagnosis and individual treatment purposes. This study represents a methodology by using statistical data analysis and machine learning to provide help to psychiatrists and therapists on the diagnosis and individualized treatment of participants with ASD and ADHD. In this paper we propose an emotion recognition experiment environment and collect eye tracker fixation data together with the application log data More >

Displaying 1-10 on page 1 of 6. Per Page