Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (196)
  • Open Access

    CORRECTION

    Correction: Noise-Filtering Enhanced Deep Cognitive Diagnosis Model for Latent Skill Discovering

    Jing Geng1,*, Huali Yang2, Shengze Hu3

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 985-986, 2024, DOI:10.32604/iasc.2024.059591 - 31 October 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    High-Secured Image LSB Steganography Using AVL-Tree with Random RGB Channel Substitution

    Murad Njoum1,2,*, Rossilawati Sulaiman1, Zarina Shukur1, Faizan Qamar1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 183-211, 2024, DOI:10.32604/cmc.2024.050090 - 15 October 2024

    Abstract Random pixel selection is one of the image steganography methods that has achieved significant success in enhancing the robustness of hidden data. This property makes it difficult for steganalysts’ powerful data extraction tools to detect the hidden data and ensures high-quality stego image generation. However, using a seed key to generate non-repeated sequential numbers takes a long time because it requires specific mathematical equations. In addition, these numbers may cluster in certain ranges. The hidden data in these clustered pixels will reduce the image quality, which steganalysis tools can detect. Therefore, this paper proposes a… More >

  • Open Access

    ARTICLE

    High-Order DG Schemes with Subcell Limiting Strategies for Simulations of Shocks, Vortices and Sound Waves in Materials Science Problems

    Zhenhua Jiang1,*, Xi Deng2,3, Xin Zhang1, Chao Yan1, Feng Xiao4, Jian Yu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2183-2204, 2024, DOI:10.32604/fdmp.2024.053231 - 23 September 2024

    Abstract Shock waves, characterized by abrupt changes in pressure, temperature, and density, play a significant role in various materials science processes involving fluids. These high-energy phenomena are utilized across multiple fields and applications to achieve unique material properties and facilitate advanced manufacturing techniques. Accurate simulations of these phenomena require numerical schemes that can represent shock waves without spurious oscillations and simultaneously capture acoustic waves for a wide range of wavelength scales. This work suggests a high-order discontinuous Galerkin (DG) method with a finite volume (FV) subcell limiting strategies to achieve better subcell resolution and lower numerical More >

  • Open Access

    ARTICLE

    Fuzzy Machine Learning-Based Algorithms for Mapping Cumin and Fennel Spices Crop Fields Using Sentinel-2 Satellite Data

    Shilpa Suman1, Abhishek Rawat2,*, Anil Kumar3, S. K. Tiwari4

    Revue Internationale de Géomatique, Vol.33, pp. 363-381, 2024, DOI:10.32604/rig.2024.053981 - 18 September 2024

    Abstract In this study, the impact of the training sample selection method on the performance of fuzzy-based Possibilistic c-means (PCM) and Noise Clustering (NC) classifiers were examined and mapped the cumin and fennel rabi crop. Two training sample selection approaches that have been investigated in this study are “mean” and “individual sample as mean”. Both training sample techniques were applied to the PCM and NC classifiers to classify the two indices approach. Both approaches have been studied to decrease spectral information in temporal data processing. The Modified Soil Adjusted Vegetation Index 2 (MSAVI-2) and Class-Based Sensor… More >

  • Open Access

    ARTICLE

    YOLO-RLC: An Advanced Target-Detection Algorithm for Surface Defects of Printed Circuit Boards Based on YOLOv5

    Yuanyuan Wang1,2,*, Jialong Huang1, Md Sharid Kayes Dipu1, Hu Zhao3, Shangbing Gao1,2, Haiyan Zhang1,2, Pinrong Lv1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4973-4995, 2024, DOI:10.32604/cmc.2024.055839 - 12 September 2024

    Abstract Printed circuit boards (PCBs) provide stable connections between electronic components. However, defective printed circuit boards may cause the entire equipment system to malfunction, resulting in incalculable losses. Therefore, it is crucial to detect defective printed circuit boards during the generation process. Traditional detection methods have low accuracy in detecting subtle defects in complex background environments. In order to improve the detection accuracy of surface defects on industrial printed circuit boards, this paper proposes a residual large kernel network based on YOLOv5 (You Only Look Once version 5) for PCBs surface defect detection, called YOLO-RLC (You… More >

  • Open Access

    ARTICLE

    Research on Restoration of Murals Based on Diffusion Model and Transformer

    Yaoyao Wang1, Mansheng Xiao1,*, Yuqing Hu2, Jin Yan1, Zeyu Zhu1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4433-4449, 2024, DOI:10.32604/cmc.2024.053232 - 12 September 2024

    Abstract Due to the limitations of a priori knowledge and convolution operation, the existing image restoration techniques cannot be directly applied to the cultural relics mural restoration, in order to more accurately restore the original appearance of the cultural relics mural images, an image restoration based on the denoising diffusion probability model (Denoising Diffusion Probability Model (DDPM)) and the Transformer method. The process involves two steps: in the first step, the damaged mural image is firstly utilized as the condition to generate the noise image, using the time, condition and noise image patch as the inputs… More >

  • Open Access

    ARTICLE

    A Probabilistic Trust Model and Control Algorithm to Protect 6G Networks against Malicious Data Injection Attacks in Edge Computing Environments

    Borja Bordel Sánchez1,*, Ramón Alcarria2, Tomás Robles1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 631-654, 2024, DOI:10.32604/cmes.2024.050349 - 20 August 2024

    Abstract Future 6G communications are envisioned to enable a large catalogue of pioneering applications. These will range from networked Cyber-Physical Systems to edge computing devices, establishing real-time feedback control loops critical for managing Industry 5.0 deployments, digital agriculture systems, and essential infrastructures. The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised. While full automation will enhance industrial efficiency significantly, it concurrently introduces new cyber risks and vulnerabilities. In particular, unattended systems are highly susceptible to trust issues: malicious nodes and false information can be easily introduced into… More >

  • Open Access

    ARTICLE

    Chemically Mediated Interactions between Grapevine, Aphid, Ladybird, and Ant in the Context of Insect Chemical Ecology

    Taghreed Alsufyani1,*, Noura J. Alotaibi2, Nour Houda M’sakni1, Mona A. Almalki1, Eman M. Alghamdi3

    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1523-1542, 2024, DOI:10.32604/phyton.2024.050351 - 30 July 2024

    Abstract This study simplifies the complex relationship among grapevine plants, aphids, ladybirds, and ants, which is essential for effective pest management and ecological balance. This study investigated the impact of aphid attacks and the presence of ants and ladybirds on the volatile compounds profile released into the chemosphere of the community consisting of the common vine Vitis vinifera, the aphid Aphis illinoisensis, the ladybird Coccinella undecimpunctata-and the ant Tapinoma magnum. This study aims to analyze the volatile compounds emitted by the grapevine and surrounding insects in response to these intricate interactions. The extraction of volatile organic compounds (VOCs) was carried… More >

  • Open Access

    ARTICLE

    A Gaussian Noise-Based Algorithm for Enhancing Backdoor Attacks

    Hong Huang, Yunfei Wang*, Guotao Yuan, Xin Li

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 361-387, 2024, DOI:10.32604/cmc.2024.051633 - 18 July 2024

    Abstract Deep Neural Networks (DNNs) are integral to various aspects of modern life, enhancing work efficiency. Nonetheless, their susceptibility to diverse attack methods, including backdoor attacks, raises security concerns. We aim to investigate backdoor attack methods for image categorization tasks, to promote the development of DNN towards higher security. Research on backdoor attacks currently faces significant challenges due to the distinct and abnormal data patterns of malicious samples, and the meticulous data screening by developers, hindering practical attack implementation. To overcome these challenges, this study proposes a Gaussian Noise-Targeted Universal Adversarial Perturbation (GN-TUAP) algorithm. This approach… More >

  • Open Access

    ARTICLE

    A Tabletop Nano-CT Image Noise Reduction Network Based on 3-Dimensional Axial Attention Mechanism

    Huijuan Fu, Linlin Zhu, Chunhui Wang, Xiaoqi Xi, Yu Han, Lei Li, Yanmin Sun, Bin Yan*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1711-1725, 2024, DOI:10.32604/cmc.2024.049623 - 18 July 2024

    Abstract Nano-computed tomography (Nano-CT) is an emerging, high-resolution imaging technique. However, due to their low-light properties, tabletop Nano-CT has to be scanned under long exposure conditions, which the scanning process is time-consuming. For 3D reconstruction data, this paper proposed a lightweight 3D noise reduction method for desktop-level Nano-CT called AAD-ResNet (Axial Attention DeNoise ResNet). The network is framed by the U-net structure. The encoder and decoder are incorporated with the proposed 3D axial attention mechanism and residual dense block. Each layer of the residual dense block can directly access the features of the previous layer, which More >

Displaying 1-10 on page 1 of 196. Per Page