Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (219)
  • Open Access

    ARTICLE

    IoT-Driven Pollution Detection System for Indoor and Outdoor Environments

    Fatima Khan1, Amna Khan1, Tariq Ali2, Tariq Shahzad3, Tehseen Mazhar4,*, Sunawar Khan5, Muhammad Adnan Khan6,*, Habib Hamam7,8,9,10

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-27, 2026, DOI:10.32604/cmc.2025.068228 - 09 December 2025

    Abstract The rise in noise and air pollution poses severe risks to human health and the environment. Industrial and vehicular emissions release harmful pollutants such as CO2, SO2, CO, CH4, and noise, leading to significant environmental degradation. Monitoring and analyzing pollutant concentrations in real-time is crucial for mitigating these risks. However, existing systems often lack the capacity to monitor both indoor and outdoor environments effectively.This study presents a low-cost, IoT-based pollution detection system that integrates gas sensors (MQ-135 and MQ-4), a noise sensor (LM393), and a humidity sensor (DHT-22), all connected to a Node MCU (ESP8266) microcontroller. The… More >

  • Open Access

    ARTICLE

    Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise

    Jeongsu Park1, Moohong Min2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3913-3948, 2025, DOI:10.32604/cmes.2025.072261 - 23 December 2025

    Abstract Time series anomaly detection is critical in domains such as manufacturing, finance, and cybersecurity. Recent generative AI models, particularly Transformer- and Autoencoder-based architectures, show strong accuracy but their robustness under noisy conditions is less understood. This study evaluates three representative models—AnomalyTransformer, TranAD, and USAD—on the Server Machine Dataset (SMD) and cross-domain benchmarks including the Soil Moisture Active Passive (SMAP) dataset, the Mars Science Laboratory (MSL) dataset, and the Secure Water Treatment (SWaT) testbed. Seven noise settings (five canonical, two mixed) at multiple intensities are tested under fixed clean-data training, with variations in window, stride, and More > Graphic Abstract

    Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise

  • Open Access

    ARTICLE

    Spectrotemporal Deep Learning for Heart Sound Classification under Clinical Noise Conditions

    Akbare Yaqub1,2, Muhammad Sadiq Orakzai2, Muhammad Farrukh Qureshi3,4, Zohaib Mushtaq5, Imran Siddique6,7, Taha Radwan8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2503-2533, 2025, DOI:10.32604/cmes.2025.071571 - 26 November 2025

    Abstract Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, necessitating efficient diagnostic tools. This study develops and validates a deep learning framework for phonocardiogram (PCG) classification, focusing on model generalizability and robustness. Initially, a ResNet-18 model was trained on the PhysioNet 2016 dataset, achieving high accuracy. To assess real-world viability, we conducted extensive external validation on the HLS-CMDS dataset. We performed four key experiments: (1) Fine-tuning the PhysioNet-trained model for binary (Normal/Abnormal) classification on HLS-CMDS, achieving 88% accuracy. (2) Fine-tuning the same model for multi-class classification (Normal, Murmur, Extra Sound, Rhythm Disorder), which yielded… More >

  • Open Access

    ARTICLE

    Acoustic Noise-Based Scroll Compressor Diagnosis during the Manufacturing Process

    Geunil Lee1, Daeil Kwon2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3329-3342, 2025, DOI:10.32604/cmes.2025.069402 - 30 September 2025

    Abstract Nondestructive testing (NDT) methods such as visual inspection and ultrasonic testing are widely applied in manufacturing quality control, but they remain limited in their ability to detect defect characteristics. Visual inspection depends strongly on operator experience, while ultrasonic testing requires physical contact and stable coupling conditions that are difficult to maintain in production lines. These constraints become more pronounced when defect-related information is scarce or when background noise interferes with signal acquisition in manufacturing processes. This study presents a non-contact acoustic method for diagnosing defects in scroll compressors during the manufacturing process. The diagnostic approach… More >

  • Open Access

    ARTICLE

    Advanced Multi-Channel Echo Separation Techniques for High-Interference Automotive Radars

    Shih-Lin Lin*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1365-1382, 2025, DOI:10.32604/cmc.2025.067764 - 29 August 2025

    Abstract This paper proposes an integrated multi-stage framework to enhance frequency modulated continuous wave (FMCW) automotive radar performance under high noise and interference. The four-stage pipeline is applied consecutively: (i) an improved independent component analysis (ICA) blindly separates the two-channel echoes, isolating target and interference components; (ii) a recursive least-squares (RLS) filter compensates amplitude- and phase-mismatches, restoring signal fidelity; (iii) variational mode decomposition (VMD) followed by the Hilbert-Huang Transform (HHT) extracts noise-free intrinsic mode functions (IMFs) and sharpens their time-frequency signatures; and (iv) HHT-based beat-frequency estimation reconstructs a clean echo and delivers accurate range information. Finally, More >

  • Open Access

    ARTICLE

    Face Forgery Detection via Multi-Scale Dual-Modality Mutual Enhancement Network

    Yuanqing Ding1,2, Hanming Zhai1, Qiming Ma1, Liang Zhang1, Lei Shao2, Fanliang Bu1,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 905-923, 2025, DOI:10.32604/cmc.2025.066307 - 29 August 2025

    Abstract As the use of deepfake facial videos proliferate, the associated threats to social security and integrity cannot be overstated. Effective methods for detecting forged facial videos are thus urgently needed. While many deep learning-based facial forgery detection approaches show promise, they often fail to delve deeply into the complex relationships between image features and forgery indicators, limiting their effectiveness to specific forgery techniques. To address this challenge, we propose a dual-branch collaborative deepfake detection network. The network processes video frame images as input, where a specialized noise extraction module initially extracts the noise feature maps.… More >

  • Open Access

    ARTICLE

    Multi-Kernel Bandwidth Based Maximum Correntropy Extended Kalman Filter for GPS Navigation

    Amita Biswal, Dah-Jing Jwo*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 927-944, 2025, DOI:10.32604/cmes.2025.067299 - 31 July 2025

    Abstract The extended Kalman filter (EKF) is extensively applied in integrated navigation systems that combine the global navigation satellite system (GNSS) and strap-down inertial navigation system (SINS). However, the performance of the EKF can be severely impacted by non-Gaussian noise and measurement noise uncertainties, making it difficult to achieve optimal GNSS/INS integration. Dealing with non-Gaussian noise remains a significant challenge in filter development today. Therefore, the maximum correntropy criterion (MCC) is utilized in EKFs to manage heavy-tailed measurement noise. However, its capability to handle non-Gaussian process noise and unknown disturbances remains largely unexplored. In this paper,… More >

  • Open Access

    ARTICLE

    CFD-Based Optimization of Aerodynamic Noise in High-Speed Hair Dryer Flow Channels

    Ya Li1,*, Min Deng2, Shanyi Hao3, Yucong Lin1, Yu Lu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1611-1622, 2025, DOI:10.32604/fdmp.2025.067497 - 31 July 2025

    Abstract The noise generated by high-speed hair dryers significantly affects user experience, with aerodynamic design playing a crucial role in controlling sound emissions. This study investigates the aerodynamic noise characteristics of a commercial high-speed hair dryer through Computational Fluid Dynamics (CFD) analysis. The velocity field, streamline patterns, and vector distribution within the primary flow path and internal cavity were systematically examined. Results indicate that strong interactions between the wake flow generated by the guide vanes and the straight baffle in the rear flow path induce vortex structures near the outlet, which are primarily responsible for high-frequency More >

  • Open Access

    ARTICLE

    Three-Level Intrusion Detection Model for Wireless Sensor Networks Based on Dynamic Trust Evaluation

    Xiaogang Yuan*, Huan Pei, Yanlin Wu

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5555-5575, 2025, DOI:10.32604/cmc.2025.063537 - 30 July 2025

    Abstract In the complex environment of Wireless Sensor Networks (WSNs), various malicious attacks have emerged, among which internal attacks pose particularly severe security risks. These attacks seriously threaten network stability, data transmission reliability, and overall performance. To effectively address this issue and significantly improve intrusion detection speed, accuracy, and resistance to malicious attacks, this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation (TIDM-DTE). This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust, communication trust, and energy consumption trust by focusing… More >

  • Open Access

    ARTICLE

    Application and Performance Optimization of SLHS-TCN-XGBoost Model in Power Demand Forecasting

    Tianwen Zhao1, Guoqing Chen2,3, Cong Pang4, Piyapatr Busababodhin3,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2883-2917, 2025, DOI:10.32604/cmes.2025.066442 - 30 June 2025

    Abstract Existing power forecasting models struggle to simultaneously handle high-dimensional, noisy load data while capturing long-term dependencies. This critical limitation necessitates an integrated approach combining dimensionality reduction, temporal modeling, and robust prediction, especially for multi-day forecasting. A novel hybrid model, SLHS-TCN-XGBoost, is proposed for power demand forecasting, leveraging SLHS (dimensionality reduction), TCN (temporal feature learning), and XGBoost (ensemble prediction). Applied to the three-year electricity load dataset of Seoul, South Korea, the model’s MAE, RMSE, and MAPE reached 112.08, 148.39, and 2%, respectively, which are significantly reduced in MAE, RMSE, and MAPE by 87.37%, 87.35%, and 87.43%… More >

Displaying 1-10 on page 1 of 219. Per Page