Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Improving Diversity with Multi-Loss Adversarial Training in Personalized News Recommendation

    Ruijin Xue1,2, Shuang Feng1,2,*, Qi Wang1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3107-3122, 2024, DOI:10.32604/cmc.2024.052600 - 15 August 2024

    Abstract Users’ interests are often diverse and multi-grained, with their underlying intents even more so. Effectively capturing users’ interests and uncovering the relationships between diverse interests are key to news recommendation. Meanwhile, diversity is an important metric for evaluating news recommendation algorithms, as users tend to reject excessive homogeneous information in their recommendation lists. However, recommendation models themselves lack diversity awareness, making it challenging to achieve a good balance between the accuracy and diversity of news recommendations. In this paper, we propose a news recommendation algorithm that achieves good performance in both accuracy and diversity. Unlike… More >

  • Open Access

    ARTICLE

    LKPNR: Large Language Models and Knowledge Graph for Personalized News Recommendation Framework

    Hao Chen#, Runfeng Xie#, Xiangyang Cui, Zhou Yan, Xin Wang, Zhanwei Xuan*, Kai Zhang*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4283-4296, 2024, DOI:10.32604/cmc.2024.049129 - 20 June 2024

    Abstract Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems. Traditional methods are usually difficult to learn and acquire complex semantic information in news texts, resulting in unsatisfactory recommendation results. Besides, these traditional methods are more friendly to active users with rich historical behaviors. However, they can not effectively solve the long tail problem of inactive users. To address these issues, this research presents a novel general framework that combines Large Language Models (LLM) and Knowledge Graphs (KG) into traditional methods. To learn the contextual information of news text, we… More >

  • Open Access

    ARTICLE

    FedNRM: A Federal Personalized News Recommendation Model Achieving User Privacy Protection

    Shoujian Yu1, Zhenchi Jie1, Guowen Wu1, Hong Zhang1, Shigen Shen2,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1729-1751, 2023, DOI:10.32604/iasc.2023.039911 - 21 June 2023

    Abstract In recent years, the type and quantity of news are growing rapidly, and it is not easy for users to find the news they are interested in the massive amount of news. A news recommendation system can score and predict the candidate news, and finally recommend the news with high scores to users. However, existing user models usually only consider users’ long-term interests and ignore users’ recent interests, which affects users’ usage experience. Therefore, this paper introduces gated recurrent unit (GRU) sequence network to capture users’ short-term interests and combines users’ short-term interests and long-term… More >

  • Open Access

    ARTICLE

    Personalized News Recommendation Based on the Text and Image Integration

    Kehua Yang1, *, Shaosong Long1, Wei Zhang1, Jiqing Yao2, Jing Liu1

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 557-570, 2020, DOI:10.32604/cmc.2020.09907 - 20 May 2020

    Abstract The personalized news recommendation has been very popular in the news recommendation field. In most research, the picture information in the news is ignored, but the information conveyed to the users through pictures is more intuitive and more likely to affect the users’ reading interests than the one in the textual form. Therefore, in this paper, a model that combines images and texts in the news is proposed. In this model, the new tags are extracted from the images and texts in the news, and based on these new tags, an adaptive tag (AT) algorithm… More >

Displaying 1-10 on page 1 of 4. Per Page