Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (57)
  • Open Access

    REVIEW

    A Review of Generative Adversarial Networks for Intrusion Detection Systems: Advances, Challenges, and Future Directions

    Monirah Al-Ajlan*, Mourad Ykhlef

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2053-2076, 2024, DOI:10.32604/cmc.2024.055891 - 18 November 2024

    Abstract The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems (IDSs). IDSs have become a research hotspot and have seen remarkable performance improvements. Generative adversarial networks (GANs) have also garnered increasing research interest recently due to their remarkable ability to generate data. This paper investigates the application of (GANs) in (IDS) and explores their current use within this research field. We delve into the adoption of GANs within signature-based, anomaly-based, and hybrid IDSs, focusing on their objectives, methodologies, and advantages. Overall, GANs have been widely employed, mainly focused on solving the More >

  • Open Access

    ARTICLE

    Adaptive Update Distribution Estimation under Probability Byzantine Attack

    Gang Long, Zhaoxin Zhang*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1667-1685, 2024, DOI:10.32604/cmc.2024.052082 - 15 October 2024

    Abstract The secure and normal operation of distributed networks is crucial for accurate parameter estimation. However, distributed networks are frequently susceptible to Byzantine attacks. Considering real-life scenarios, this paper investigates a probability Byzantine (PB) attack, utilizing a Bernoulli distribution to simulate the attack probability. Historically, additional detection mechanisms are used to mitigate such attacks, leading to increased energy consumption and burdens on distributed nodes, consequently diminishing operational efficiency. Differing from these approaches, an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks. In the proposed algorithm, a penalty strategy is initially More >

  • Open Access

    ARTICLE

    Machine Learning Enabled Novel Real-Time IoT Targeted DoS/DDoS Cyber Attack Detection System

    Abdullah Alabdulatif1, Navod Neranjan Thilakarathne2,*, Mohamed Aashiq3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3655-3683, 2024, DOI:10.32604/cmc.2024.054610 - 12 September 2024

    Abstract The increasing prevalence of Internet of Things (IoT) devices has introduced a new phase of connectivity in recent years and, concurrently, has opened the floodgates for growing cyber threats. Among the myriad of potential attacks, Denial of Service (DoS) attacks and Distributed Denial of Service (DDoS) attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of traffic. As IoT devices often lack the inherent security measures found in more mature computing platforms, the need for robust DoS/DDoS detection systems tailored to IoT is paramount for… More >

  • Open Access

    ARTICLE

    Fuzzy Risk Assessment Method for Airborne Network Security Based on AHP-TOPSIS

    Kenian Wang1,2,*, Yuan Hong1,2, Chunxiao Li2

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1123-1142, 2024, DOI:10.32604/cmc.2024.052088 - 18 July 2024

    Abstract With the exponential increase in information security risks, ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment. However, experts possess a limited understanding of fundamental security elements, such as assets, threats, and vulnerabilities, due to the confidentiality of airborne networks, resulting in cognitive uncertainty. Therefore, the Pythagorean fuzzy Analytic Hierarchy Process (AHP) Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) is proposed to address the expert cognitive uncertainty during information security risk assessment for airborne networks. First, Pythagorean fuzzy AHP is employed to construct an index system… More >

  • Open Access

    ARTICLE

    Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1457-1490, 2024, DOI:10.32604/cmc.2024.051996 - 18 July 2024

    Abstract This study describes improving network security by implementing and assessing an intrusion detection system (IDS) based on deep neural networks (DNNs). The paper investigates contemporary technical ways for enhancing intrusion detection performance, given the vital relevance of safeguarding computer networks against harmful activity. The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset, a popular benchmark for IDS research. The model performs well in both the training and validation stages, with 91.30% training accuracy and 94.38% validation accuracy. Thus, the model shows good learning and generalization capabilities with minor losses of… More >

  • Open Access

    ARTICLE

    Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network

    Saad Abdalla Agaili Mohamed*, Sefer Kurnaz

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 819-841, 2024, DOI:10.32604/cmc.2024.050474 - 18 July 2024

    Abstract VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world. However, increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorize VPN network data. We present a novel VPN network traffic flow classification method utilizing Artificial Neural Networks (ANN). This paper aims to provide a reliable system that can identify a virtual private network (VPN) traffic from intrusion attempts, data exfiltration, and denial-of-service assaults. We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns. Next, we create an ANN architecture that can… More >

  • Open Access

    ARTICLE

    CNN Channel Attention Intrusion Detection System Using NSL-KDD Dataset

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4319-4347, 2024, DOI:10.32604/cmc.2024.050586 - 20 June 2024

    Abstract Intrusion detection systems (IDS) are essential in the field of cybersecurity because they protect networks from a wide range of online threats. The goal of this research is to meet the urgent need for small-footprint, highly-adaptable Network Intrusion Detection Systems (NIDS) that can identify anomalies. The NSL-KDD dataset is used in the study; it is a sizable collection comprising 43 variables with the label’s “attack” and “level.” It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks (CNN). Furthermore, this dataset makes it easier to conduct… More >

  • Open Access

    ARTICLE

    Scientific Elegance in NIDS: Unveiling Cardinality Reduction, Box-Cox Transformation, and ADASYN for Enhanced Intrusion Detection

    Amerah Alabrah*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3897-3912, 2024, DOI:10.32604/cmc.2024.048528 - 20 June 2024

    Abstract The emergence of digital networks and the wide adoption of information on internet platforms have given rise to threats against users’ private information. Many intruders actively seek such private data either for sale or other inappropriate purposes. Similarly, national and international organizations have country-level and company-level private information that could be accessed by different network attacks. Therefore, the need for a Network Intruder Detection System (NIDS) becomes essential for protecting these networks and organizations. In the evolution of NIDS, Artificial Intelligence (AI) assisted tools and methods have been widely adopted to provide effective solutions. However,… More >

  • Open Access

    ARTICLE

    Correlation Composition Awareness Model with Pair Collaborative Localization for IoT Authentication and Localization

    Kranthi Alluri, S. Gopikrishnan*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 943-961, 2024, DOI:10.32604/cmc.2024.048621 - 25 April 2024

    Abstract Secure authentication and accurate localization among Internet of Things (IoT) sensors are pivotal for the functionality and integrity of IoT networks. IoT authentication and localization are intricate and symbiotic, impacting both the security and operational functionality of IoT systems. Hence, accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges. To overcome these challenges, recent approaches have used encryption techniques with well-known key infrastructures. However, these methods are inefficient due to the increasing number of data breaches in their localization approaches. This proposed research efficiently integrates authentication and localization processes in such a… More >

  • Open Access

    ARTICLE

    A Web Application Fingerprint Recognition Method Based on Machine Learning

    Yanmei Shi1, Wei Yu2,*, Yanxia Zhao3,*, Yungang Jia4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 887-906, 2024, DOI:10.32604/cmes.2024.046140 - 16 April 2024

    Abstract Web application fingerprint recognition is an effective security technology designed to identify and classify web applications, thereby enhancing the detection of potential threats and attacks. Traditional fingerprint recognition methods, which rely on preannotated feature matching, face inherent limitations due to the ever-evolving nature and diverse landscape of web applications. In response to these challenges, this work proposes an innovative web application fingerprint recognition method founded on clustering techniques. The method involves extensive data collection from the Tranco List, employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction. The core… More >

Displaying 1-10 on page 1 of 57. Per Page