Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,714)
  • Open Access

    ARTICLE

    Historical Transportation GIS (1880–2020) for Decision Making in Sustainable Development Goals

    Bárbara Polo-Martín*

    Revue Internationale de Géomatique, Vol.35, pp. 53-78, 2026, DOI:10.32604/rig.2026.071069 - 05 February 2026

    Abstract The expansion of transportation networks, including railways and ports, has been a major force driving urban growth, mobility, and socio-economic transformations since the Industrial Revolution. This study utilizes Historical Geographic Information Systems to examine the global evolution of transportation infrastructure, focusing on railways and ports, from 1880 to 2020. The dataset enables a multidimensional analysis of how transportation systems have shaped cities, influenced regional development, and helped to make possible sustainability efforts. By offering insights into transport accessibility, land-use changes, and economic connectivity, the study provides a robust empirical foundation for understanding long-term infrastructure dynamics. More >

  • Open Access

    ARTICLE

    Exploring the Associations between Sedentary Time, Social Support, Social Rejection and Psychological Distress: A Network Analysis in Students

    Yuyang Nie1,2,#, Kunkun Jiang2,3,#, Tianci Wang4, Cong Liu1,2, Kangli Du1,2, Yuxian Cao2, Guofeng Qu2,*, Lijia Hou2,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.073592 - 28 January 2026

    Abstract Background: Amid the global rise in adolescent sedentary behavior and psychological distress, extant research has largely focused on variable-level associations, neglecting symptom-level interactions. This study applies network analysis, aims to delineate the interconnections among sedentary time, social support, social exclusion, and psychological distress in Chinese students, and to identify core and bridge symptoms to inform targeted interventions. Methods: This study employed a cross-sectional design to investigate the complex relationships among sedentary behavior, social support, social exclusion, and psychological distress among Chinese students. The research involved 459 high school and university students, using network analysis and mediation… More >

  • Open Access

    REVIEW

    GNN: Core Branches, Integration Strategies and Applications

    Wenfeng Zheng1, Guangyu Xu2, Siyu Lu3, Junmin Lyu4, Feng Bao5,*, Lirong Yin6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075741 - 29 January 2026

    Abstract Graph Neural Networks (GNNs), as a deep learning framework specifically designed for graph-structured data, have achieved deep representation learning of graph data through message passing mechanisms and have become a core technology in the field of graph analysis. However, current reviews on GNN models are mainly focused on smaller domains, and there is a lack of systematic reviews on the classification and applications of GNN models. This review systematically synthesizes the three canonical branches of GNN, Graph Convolutional Network (GCN), Graph Attention Network (GAT), and Graph Sampling Aggregation Network (GraphSAGE), and analyzes their integration pathways More >

  • Open Access

    ARTICLE

    Neuro-Symbolic Graph Learning for Causal Inference and Continual Learning in Mental-Health Risk Assessment

    Monalisa Jena1, Noman Khan2,*, Mi Young Lee3,*, Seungmin Rho3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075119 - 29 January 2026

    Abstract Mental-health risk detection seeks early signs of distress from social media posts and clinical transcripts to enable timely intervention before crises. When such risks go undetected, consequences can escalate to self-harm, long-term disability, reduced productivity, and significant societal and economic burden. Despite recent advances, detecting risk from online text remains challenging due to heterogeneous language, evolving semantics, and the sequential emergence of new datasets. Effective solutions must encode clinically meaningful cues, reason about causal relations, and adapt to new domains without forgetting prior knowledge. To address these challenges, this paper presents a Continual Neuro-Symbolic Graph… More >

  • Open Access

    REVIEW

    A Comprehensive Literature Review of AI-Driven Application Mapping and Scheduling Techniques for Network-on-Chip Systems

    Naveed Ahmad1, Muhammad Kaleem2, Mourad Elloumi3, Muhammad Azhar Mushtaq2, Ahlem Fatnassi4, Mohd Fazil5, Anas Bilal6,*, Abdulbasit A. Darem7,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074902 - 29 January 2026

    Abstract Network-on-Chip (NoC) systems are progressively deployed in connecting massively parallel megacore systems in the new computing architecture. As a result, application mapping has become an important aspect of performance and scalability, as current trends require the distribution of computation across network nodes/points. In this paper, we survey a large number of mapping and scheduling techniques designed for NoC architectures. This time, we concentrated on 3D systems. We take a systematic literature review approach to analyze existing methods across static, dynamic, hybrid, and machine-learning-based approaches, alongside preliminary AI-based dynamic models in recent works. We classify them… More >

  • Open Access

    ARTICLE

    Multivariate Data Anomaly Detection Based on Graph Structure Learning

    Haoxiang Wen1, Zhaoyang Wang1, Zhonglin Ye1,*, Haixing Zhao1, Maosong Sun2

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074410 - 29 January 2026

    Abstract Multivariate anomaly detection plays a critical role in maintaining the stable operation of information systems. However, in existing research, multivariate data are often influenced by various factors during the data collection process, resulting in temporal misalignment or displacement. Due to these factors, the node representations carry substantial noise, which reduces the adaptability of the multivariate coupled network structure and subsequently degrades anomaly detection performance. Accordingly, this study proposes a novel multivariate anomaly detection model grounded in graph structure learning. Firstly, a recommendation strategy is employed to identify strongly coupled variable pairs, which are then used More >

  • Open Access

    ARTICLE

    Spatio-Temporal Graph Neural Networks with Elastic-Band Transform for Solar Radiation Prediction

    Guebin Choi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073985 - 29 January 2026

    Abstract This study proposes a novel forecasting framework that simultaneously captures the strong periodicity and irregular meteorological fluctuations inherent in solar radiation time series. Existing approaches typically define inter-regional correlations using either simple correlation coefficients or distance-based measures when applying spatio-temporal graph neural networks (STGNNs). However, such definitions are prone to generating spurious correlations due to the dominance of periodic structures. To address this limitation, we adopt the Elastic-Band Transform (EBT) to decompose solar radiation into periodic and amplitude-modulated components, which are then modeled independently with separate graph neural networks. The periodic component, characterized by strong More >

  • Open Access

    REVIEW

    Grey Wolf Optimizer for Cluster-Based Routing in Wireless Sensor Networks: A Methodological Survey

    Mohammad Shokouhifar1,*, Fakhrosadat Fanian2, Mehdi Hosseinzadeh3,4,*, Aseel Smerat5,6, Kamal M. Othman7, Abdulfattah Noorwali7, Esam Y. O. Zafar7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.073789 - 29 January 2026

    Abstract Wireless Sensor Networks (WSNs) have become foundational in numerous real-world applications, ranging from environmental monitoring and industrial automation to healthcare systems and smart city development. As these networks continue to grow in scale and complexity, the need for energy-efficient, scalable, and robust communication protocols becomes more critical than ever. Metaheuristic algorithms have shown significant promise in addressing these challenges, offering flexible and effective solutions for optimizing WSN performance. Among them, the Grey Wolf Optimizer (GWO) algorithm has attracted growing attention due to its simplicity, fast convergence, and strong global search capabilities. Accordingly, this survey provides… More >

  • Open Access

    ARTICLE

    An Integrated DNN-FEA Approach for Inverse Identification of Passive, Heterogeneous Material Parameters of Left Ventricular Myocardium

    Zhuofan Li1, Daniel H. Pak2, James S. Duncan2, Liang Liang3, Minliang Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073757 - 29 January 2026

    Abstract Patient-specific finite element analysis (FEA) is a promising tool for noninvasive quantification of cardiac and vascular structural mechanics in vivo. However, inverse material property identification using FEA, which requires iteratively solving nonlinear hyperelasticity problems, is computationally expensive which limits the ability to provide timely patient-specific insights to clinicians. In this study, we present an inverse material parameter identification strategy that integrates deep neural networks (DNNs) with FEA, namely inverse DNN-FEA. In this framework, a DNN encodes the spatial distribution of material parameters and effectively regularizes the inverse solution, which aims to reduce susceptibility to local optima… More >

  • Open Access

    ARTICLE

    Cognitive NFIDC-FRBFNN Control Architecture for Robust Path Tracking of Mobile Service Robots in Hospital Settings

    Huda Talib Najm1,2, Ahmed Sabah Al-Araji3, Nur Syazreen Ahmad1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071837 - 29 January 2026

    Abstract Mobile service robots (MSRs) in hospital environments require precise and robust trajectory tracking to ensure reliable operation under dynamic conditions, including model uncertainties and external disturbances. This study presents a cognitive control strategy that integrates a Numerical Feedforward Inverse Dynamic Controller (NFIDC) with a Feedback Radial Basis Function Neural Network (FRBFNN). The robot’s mechanical structure was designed in SolidWorks 2022 SP2.0 and validated under operational loads using finite element analysis in ANSYS 2022 R1. The NFIDC-FRBFNN framework merges proactive inverse dynamic compensation with adaptive neural learning to achieve smooth torque responses and accurate motion control.… More >

Displaying 1-10 on page 1 of 3714. Per Page