Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Rheological and Morphological Characterization of Modified Bitumen with Cup Lump Rubber

    Mohammed Albuaymi1, Suleiman Abdulrahman2,3, Fayez Alanazi4, Hani Alanazi1,*, Musa Adamu5,6

    Journal of Renewable Materials, Vol.11, No.5, pp. 2433-2451, 2023, DOI:10.32604/jrm.2023.026751 - 13 February 2023

    Abstract Pure bitumen is not suitable for heavy traffic loads; hence modifiers are used to improve the bitumen performance. Recently, cup lump rubber (CLR) has become a preferred modifier due to its outstanding performance and less cost. However, little is known about the interactions between CLR and bitumen. Thus, this study investigates the behavior of bitumen with CLR. Four percentages of CLR (2.5%, 5.0%, 7.5%, and 10.0% by weight of bitumen) were used to modify conventional 60/70 penetration grade bitumen. The modified bitumen was evaluated through different laboratory testing such as dynamic shear rheometer, rotational viscosity,… More >

  • Open Access

    ARTICLE

    Preparation of Natural Rubber/Cloisite-Na+ nanocomposite in Latex Stage and its Characterization for Mould Application

    NURUL HAYATI YUSOF1,*, DAZYLAH DARJI1, TAN KIM SONG1, NGHIEM THI THUONG2

    Journal of Polymer Materials, Vol.39, No.1-2, pp. 151-166, 2022, DOI:10.32381/JPM.2022.39.1-2.10

    Abstract In this work, a pure gum mould made of prevulcanized natural rubber/cloisite-Na+ nanocomposite (PVNR/CN) was prepared and characterized for ornament application. The suitable conditions to prepare PVNR/CN latex mixtures and the properties of the resulting PVNR/CN nanocomposites were investigated. The optimum CN concentration in the latex mixture was 1.0 phr, with the properties of 60 wt% total solid content, more than 600 sec mechanical stability time, lower than 350 cP Brookfield viscosity, and pH 10. The properties of PVNR/CN nanocomposite showed high strength, moderate hardness, and good thermal stability. The morphology by TEM showed well dispersion More >

  • Open Access

    ARTICLE

    Sawdust Short Fiber Reinforced Epoxidized Natural Rubber: Insight on Its Mechanical, Physical, and Thermal Aspects

    O. S. Dahham1, N. Z. Noriman1,2,*, H. Jaya1, R. Hamzah1, M. U. Umar2,3, I. Johari4

    Journal of Renewable Materials, Vol.8, No.12, pp. 1633-1645, 2020, DOI:10.32604/jrm.2020.011377 - 12 November 2020

    Abstract In this work, Epoxidized natural rubber/sawdust short fiber (ENR-50/ SD) composites at different fiber content (5, 10, 15 and 20 phr) and size (fine size at 60–100 μm and coarse size at 10–20 mm) were prepared using two-roll mill and electrical-hydraulic hot press machine respectively. Curing characteristics, water uptake, tensile, morphological, physical, and thermal properties of the composites were investigated. Results indicated that the scorch time and cure time became shorter whereas torque improved as SD content increase. Though the decline of tensile strength and elongation at break values, modulus, hardness and crosslinking density have More >

  • Open Access

    ARTICLE

    Studies on Physical Chemistry of Rubber-Rice Husk Ash Composites

    V. Subrahmanian1,*, M. Albert Noble Einstien2

    Journal of Renewable Materials, Vol.7, No.2, pp. 171-192, 2019, DOI:10.32604/jrm.2019.00090

    Abstract Nowadays an alternate source of filler from renewable and plant derivatives are being thought of in rubber industries due to their reliability, environmental and economic benefits. Rice Husk Ash (RHA) a byproduct of the rice milling industry is obtained on partial and as well as full combustion of the rice husks. This ash is a good source of silica, silicates and needle shaped carbon and hence can be used as filler for cements. In the present study, a detailed investigation was carried out to understand the RHA as reinforcing material using mechanical properties and fractography… More >

  • Open Access

    ARTICLE

    Properties of Natural Rubber Biocomposities Filled with Alkaline Modified Oat Straw

    Marcin Masłowski*, Justyna Miedzianowska and Krzysztof Strzelec

    Journal of Renewable Materials, Vol.6, No.7, pp. 746-754, 2018, DOI:10.32604/JRM.2018.00121

    Abstract Novel elastomer biocomposites based on straw fibers (raw or chemically modified) as reinforcing elements of natural rubber (NR) were reported and studied. Oat straw fibres with different average lengths were used. Lignocellulose materials were incorporated into the elastomer, before and after chemical surface modification involving sodium hydroxide. Fourier transform infrared spectroscopy (FTIR) and microscopy techniques were employed for characterization of fillers. The kinetics of rubber mixtures, as well as rheometric properties of compounds were determined. The cross-linking density was executed on the basis of equilibrium solvent-swelling measurements applying the modified Flory–Rehner equation. The morphology of More >

  • Open Access

    ARTICLE

    Novel Approaches of Using of Spirulina Platensis in Natural Rubber Based Composites

    Ewa Głowińska*, Janusz Datta, Paulina Parcheta and Natalia Kaźmierczak

    Journal of Renewable Materials, Vol.6, No.7, pp. 680-687, 2018, DOI:10.32604/JRM.2018.00003

    Abstract The aim of this work was to investigate the influence of Spirulina (Spirulina platensis) as a natural filler on the curing characterization, morphology and mechanical, thermomechanical and thermal properties of natural rubber (NR) based composites. Spirulina was introduced into NR mixture in amount of 0 phr, 10 phr and 30 phr. The vulcanization process was carried out at the determined process condition by using hydraulic press at optimum vulcanization time (t90). It was noticed that Spirulina affected on the reduction of t90, and scorch time (t2) of the NR mixtures. Obtained vulcanizates were subjected to More >

  • Open Access

    ARTICLE

    Biogenic Amorphous Silica as Filler for Elastomers

    Nikolay Dishovsky1*, Petrunka Malinova1, Ivan Uzunov2

    Journal of Renewable Materials, Vol.6, No.4, pp. 402-412, 2018, DOI:10.7569/JRM.2017.634171

    Abstract Natural products from agricultural wastes are finding importance in the polymer industry due to their many advantages such as being lightweight, low cost and environmentally friendly. In the present study the potential of the two types of rice husk ash (RHA) prepared under different conditions as fillers in natural rubber-based elastomer composites was investigated. The fillers were prepared by rice husks incineration and characterized by means of X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) specific surface area, Hg-porosimetry and N2-adsorption. The evaluation involved determining the vulcanization characteristics… More >

  • Open Access

    ARTICLE

    Natural Rubber-Based Ionogels

    TK. N. Tran1,2, A. Guyomard-Lack3, C. Cerclier3, B. Humbert3, G. Colomines1, J-F. Pilard2, R. Deterre1, J. Le Bideau3,*, E. Leroy4,*

    Journal of Renewable Materials, Vol.6, No.3, pp. 251-258, 2018, DOI:10.7569/JRM.2017.634174

    Abstract Natural rubber (NR), besides being an abundant renewable resource for the elastomer industry, can be a potential resource for the design of innovative biobased polymer networks. The present work is based on "telechelic" liquid natural rubber oligomers obtained by controlled chemical degradation of NR. The chain ends of such oligomers can then be functionalized (with acrylate functions in the present case) and reacted with multifunctional crosslinkers in order to form networks. What's more, the initial solubility of such thermosetting system in an ionic liquid (IL) can be used for the formulation of ionogels. Such solid More >

Displaying 1-10 on page 1 of 8. Per Page