Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    PROCEEDINGS

    Leakage Diffusion and Monitor of Hydrogen-Blended Natural Gas Pipeline in Utility Tunnel

    Pengfei Duan1,*, Luling Li1, Jianhui Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012431

    Abstract The supply of hydrogen-blended natural gas to civil and industrial users can assist downstream firm to achieve carbon emission reduction, and ensure energy security as an alternative gas source. This application mode has been widely concerned by urban gas enterprises. This paper focuses on the leakage problem of hydrogen-blended pipelines in utility tunnel due to corrosion and other reasons. Using dimensional analysis method, a model experiment is designed to verify that the three-dimensional compressible fluid model coupled with transport equations can effectively simulate the concentration change of hydrogen-blended natural gas after leakage in the utility… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers

    Fayi Yan*, He Lu, Shijie Feng

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1493-1514, 2024, DOI:10.32604/fhmt.2024.055324 - 30 October 2024

    Abstract Helically coiled tube-in-tube (HCTT) heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency. HCTT heat exchangers play an important role in liquified natural gas (LNG) use and cold energy recovery. The heat transfer characteristics, pressure distribution, and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated. By comparing the simulation results of the computational model with existing experimental results, the effectiveness of the computational model is verified. The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related… More >

  • Open Access

    PROCEEDINGS

    Adaptability Study on the Equations of State for Calculating the Thermophysical Parameters of Hydrogen-Enriched Natural Gas

    Huijie Huang1, Jingfa Li2,*, Xu Sun1,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011026

    Abstract The blending of hydrogen into natural gas provides an optimal solution for large-scale hydrogen transport, utilizing existing natural gas pipelines for mixed conveyance. The thermophysical parameters of hydrogen-enriched natural gas (HENG) significantly influence the design and operation of gas transmission networks. Therefore, accurate prediction of the thermophysical parameters of HENG is crucial. However, due to the effects of hydrogen blending, the adaptability of commonly used equations of state (EoSs) to HENG remains uncertain, especially at high hydrogen blending ratios (HBRs). In this study, the accuracy of the EoSs of PR, BWRS, AGA8-92DC, and GERG-2008 is… More >

  • Open Access

    PROCEEDINGS

    Lifetime Prediction of Polyethylene Pipe Due to Aging Failure in Hydrogen-Blended Natural Gas Environment

    Dukui Zheng1, Jingfa Li1,*, Bo Yu1, Zhiqiang Huang1, Yindi Zhang1, Cuiwei Liu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011669

    Abstract In the low and medium pressure urban gas pipe network, transporting the hydrogen-blended natural gas through polyethylene pipe is an important means to realize the large-scale delivery and utilization of hydrogen-blended natural gas. However, due to the characteristics of polymer material, polyethylene pipes will experience aging phenomenon, which will lead to the deterioration of performance and eventually result in brittle damage and failure. Therefore, it is of great significance to analyze and predict the lifetime of polyethylene pipe due to the aging in the hydrogen-blended natural gas environment to ensure the safe transportation. In this… More >

  • Open Access

    ARTICLE

    Impact Damage Testing Study of Shanxi-Beijing Natural Gas Pipeline Based on Decision Tree Rotary Tiller Operation

    Liqiong Chen1, Kai Zhang1,*, Song Yang1, Duo Xu1, Weihe Huang1, Hongxuan Hu2, Haonan Liu2

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 683-706, 2024, DOI:10.32604/sdhm.2024.049536 - 19 July 2024

    Abstract The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline. Residents in the area use rototillers for planting and harvesting; however, the depth of the rototillers into the ground is greater than the depth of the pipeline, posing a significant threat to the safe operation of the pipeline. Therefore, it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe operation of pipelines. This article focuses on the Shanxi-Beijing natural gas pipeline, utilizing finite element simulation software to establish a finite More >

  • Open Access

    ARTICLE

    CFD Investigation of Diffusion Law and Harmful Boundary of Buried Natural Gas Pipeline in the Mountainous Environment

    Liqiong Chen1, Kui Zhao1, Kai Zhang1,*, Duo Xv1, Hongxvan Hu2, Guoguang Ma1, Wenwen Zhan3

    Energy Engineering, Vol.121, No.8, pp. 2143-2165, 2024, DOI:10.32604/ee.2024.049362 - 19 July 2024

    Abstract The leakage gas from a buried natural gas pipelines has the great potential to cause economic losses and environmental pollution owing to the complexity of the mountainous environment. In this study, computational fluid dynamics (CFD) method was applied to investigate the diffusion law and hazard range of buried natural gas pipeline leakage in mountainous environment. Based on cloud chart, concentration at the monitoring site and hazard range of lower explosion limit (LEL) and upper explosion limit (UEL), the influences of leakage hole direction and shape, soil property, burial depth, obstacle type on the diffusion law… More >

  • Open Access

    ARTICLE

    Resilience-Oriented Load Restoration Method and Repair Strategies for Regional Integrated Electricity-Natural Gas System

    Keqiang Wang1, Pengyang Zhao1, Changjian Wang2, Zimeng Zhang1, Yu Zhang1, Jia Lu1, Zedong Yang2,*

    Energy Engineering, Vol.121, No.4, pp. 1091-1108, 2024, DOI:10.32604/ee.2023.044016 - 26 March 2024

    Abstract The rising frequency of extreme disaster events seriously threatens the safe and secure operation of the regional integrated electricity-natural gas system (RIENGS). With the growing level of coupling between electric and natural gas systems, it is critical to enhance the load restoration capability of both systems. This paper proposes a coordinated optimization strategy for resilience-enhanced RIENGS load restoration and repair scheduling and transforms it into a mixed integer second-order cone programming (MISOCP) model. The proposed model considers the distribution network reconfiguration and the coordinated repair strategy between the two systems, minimizing the total system load More >

  • Open Access

    ARTICLE

    Numerical Investigation of Combined Production of Natural Gas Hydrate and Conventional Gas

    Hongzhi Xu1,2, Jian Wang1,3, Shuxia Li1,*, Fengrui Zhao1, Chengwen Wang1, Yang Guo1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 505-523, 2024, DOI:10.32604/fdmp.2023.030604 - 12 January 2024

    Abstract Natural gas hydrate (NGH) is generally produced and accumulated together with the underlying conventional gas. Therefore, optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate. In this study, three types of models accounting for the coexistence of these gases are considered. Type A considers the upper hydrate-bearing layer (HBL) adjacent to the lower conventional gas layer (CGL); with the Type B a permeable interlayer exists between the upper HBL and the lower CGL; with the type C there is… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Asphaltene Precipitation and Deposition during Natural Gas and CO2 Injection

    Shasha Feng*, Yi Liao, Weixin Liu, Jianwen Dai, Mingying Xie, Li Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 275-292, 2024, DOI:10.32604/fdmp.2023.041825 - 14 December 2023

    Abstract Asphaltene deposition is a significant problem during gas injection processes, as it can block the porous medium, the wellbore, and the involved facilities, significantly impacting reservoir productivity and ultimate oil recovery. Only a few studies have investigated the numerical modeling of this potential effect in porous media. This study focuses on asphaltene deposition due to natural gas and CO2 injection. Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model. The results indicate that the injection of natural gas exacerbates asphaltene deposition, leading to a significant… More > Graphic Abstract

    Numerical Simulation of Asphaltene Precipitation and Deposition during Natural Gas and CO<sub>2</sub> Injection

  • Open Access

    ARTICLE

    A Feasibility Study of Using Geothermal Energy to Enhance Natural Gas Production from Offshore Gas Hydrate Reservoirs by CO2 Swapping

    Md Nahin Mahmood*, Boyun Guo

    Energy Engineering, Vol.120, No.12, pp. 2707-2720, 2023, DOI:10.32604/ee.2023.042996 - 29 November 2023

    Abstract The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate (NGH) reservoirs, primarily due to the low productivity of wells and the high operational costs involved. The present study offers an assessment of the feasibility of utilizing geothermal energy to augment the production of natural gas from offshore gas hydrate reservoirs through the implementation of the methane-CO2 swapping technique. The present study expands the research scope of the authors beyond their previous publication, which exclusively examined the generation of methane from marine gas hydrates. Specifically, the current investigation explores the… More >

Displaying 1-10 on page 1 of 34. Per Page