Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    Tailoring thermoelectric properties of copper selenide through engineering nano/micro-sized particles

    S. W. Jo, I. H. Kim, Y. J. Jeong*

    Chalcogenide Letters, Vol.22, No.3, pp. 189-196, 2025, DOI:10.15251/CL.2025.223.189

    Abstract Copper selenide has emerged as a promising thermoelectric material due to its unique structural properties and tunable electronic band structure. However, its practical application is hindered by its relatively high thermal conductivity. In this study, we report on the turning of thermal conductivity and thermoelectric energy conversion by preparing a hybrid composite material including nano- and micro-sized Cu₂Se. By employing a hydrothermal synthesis method with cetyltrimethylammonium bromide (CTAB) as a surfactant, we successfully synthesized nano-sized CuSe particles with uniform size distribution. The incorporation of these nano-sized particles with micro-sized Cu₂Se resulted in a significant reduction in More >

  • Open Access

    ARTICLE

    The effect of aluminum doping on nanostructured CdS: optical, structural and sensing characterization

    H. R. Shakira, O. A. Chichanb, M. S. Sadac,*, S. A. Husseind, S. S. Chiade, N. F. Habubif, Y. H. Kadhimg, M. Jadanh,i

    Chalcogenide Letters, Vol.22, No.1, pp. 77-89, 2025, DOI:10.15251/CL.2025.221.77

    Abstract CdS, and CdS: Al were grown onto glass bases via Chemical spray pyrolysis (CSP). XRD analysis of CdS films indicates a polycrystalline hexagonal structure with a predominant orientation of the (101) plane. The strain decreased from 28.55 to 25.66, and the grain size of undoped CdS films was around (13.51–12.14) nm as Al content rose. According to the results of AFM, CdS, CdS:2% Al, and CdS:4% Al all exhibit smooth surfaces with decreasing particle size in the range of (78.46), (69.75), and (42.20) nm, respectively. The root-mean-square roughness values for CdS and CdS:4% Al were… More >

  • Open Access

    ARTICLE

    Sensing of nanostructured CdS thin films via several solution concentrations

    R. I. Jasima, E. H. Hadia, A. A. Mansourb, S. A. Husseinc, S. S. Chiada,*, N. F. Habubid, Y. H. Kadhime, M. Jadanf,g

    Chalcogenide Letters, Vol.22, No.1, pp. 43-55, 2025, DOI:10.15251/CL.2025.221.43

    Abstract Using chemical bath deposition (CBD) methods and various molarities, nanostructured CdS thin films were developed. XRD assured that these films were cubic polycrystalline, containing larger grains as the solution's concentration of cadmium ions increased. Dislocation density values dropped from 79.32 to 62.90 as a result, nevertheless. Also, the strain is lowered from 30.88 to 27.50. AFM results demonstrate that these films suffer a decrease in the value of average particle size, root mean square, and roughness with the molarity concentration. SEM images show CdS thin films at various molarities (0.10, 0.15, 0.20) M, indicating reduced More >

  • Open Access

    ARTICLE

    Improved electrochemical performance of nanostructured CO3O4/CO3S4 composite for supercapacitor applications

    J. Ahmada, Naeem-Ur-Rehmana,*, M. Shakila, M. Saleema, K. Mahmoodb, A. Alib, M. Imranc, S. Sharifd, Hosam O. Elansarye, S. Mumtazf, A. D. Khalidg

    Chalcogenide Letters, Vol.22, No.4, pp. 277-292, 2025, DOI:10.15251/CL.2025.224.277

    Abstract This study highlights the superior electrochemical performance of Co3O4/Co3S4 composite nanoparticles for supercapacitors, compared to individual Co3O4 and Co3S4, synthesized using sol-gel, co-precipitation, and mechanical alloying methods. The composite combines pseudocapacitance and electric double-layer capacitance, as evidenced by cyclic voltammetry. It exhibits a specific capacitance of 722.9 F/g at 0.5 A/g and an energy density of 73.8 Wh/kg at 405 W/kg. Electrochemical impedance spectroscopy reveals low charge transfer resistance and excellent cycling stability is achieved, with 98.5% capacitance retention after 1500 cycles. These results confirm the composite's potential for high-performance energy storage applications. More >

  • Open Access

    ARTICLE

    Synthesis of MoS2/Fe3O4 composites for the detection of liver cancer biomarker alpha-fetoprotein

    C. B. Cuia,b, G. C. Yangb, Z. Zhanga,, X. J. Wangc,

    Chalcogenide Letters, Vol.22, No.6, pp. 507-520, 2025, DOI:10.15251/CL.2025.226.507

    Abstract This research introduces an innovative aptasensor for detecting alpha-fetoprotein with exceptional sensitivity and specificity, employing a novel MoS2/Fe3O4 composite fabricated through an advanced in-situ growth methodology. The composite exhibited a hierarchical flower-like structure with uniformly distributed Fe3O4 nanoparticles, confirmed by SEM, XRD, and Raman spectroscopy. The MoS2/Fe3O4 composite demonstrated a 66% increase in surface area (7.16 m²/g) compared to pristine MoS2, enhancing aptamer immobilization and electron transfer efficiency. Electrochemical characterization revealed a significant increase in interfacial resistance upon AFP binding, with a detection limit of 0.3 pg/mL and a dual linear range of 0.001–0.1 ng/mL and 0.1–100 More >

  • Open Access

    ARTICLE

    The impact of laser energy of pure CdS and CdS: Cu nano structured thin films on their structural, morphological, and optical properties as gas sensors

    A. W. Jabbara, N. K. Abbasb,*

    Chalcogenide Letters, Vol.22, No.8, pp. 735-752, 2025, DOI:10.15251/CL.2025.228.735

    Abstract Nanostructured CdS and CdS: Cu thin films were synthesized by pulsed laser deposition with a Nd: YAG laser of different energies, 0.1, 0.5, and 1 W. The number of pulses was 300, and the frequency was 20 kHz. The CdS nanoparticles were deposited on a glass substrate. The optical, structural, and morphological properties were investigated utilized X-ray diffraction, UV-Vis spectrophotometry, and field emission scanning electron microscopy. From 2.25 to 2.1 eV, the results demonstrate that the band gap energy reduces as laser energy increases. Morphological investigations reveal that the laser energy has a significant impact More >

  • Open Access

    ARTICLE

    Design and synthesis of diketopyrrolopyrrole-CdS hybrid nanostructures for enhanced photovoltaic applications

    Q. Fei1,*, B. Jin2, B. C. Jiang3, J. S. Huang4, L. Li5

    Chalcogenide Letters, Vol.22, No.8, pp. 693-705, 2025, DOI:10.15251/CL.2025.228.693

    Abstract An innovative hybrid nanostructure composed of diketopyrrolopyrrole (DPP) oligomers and cadmium sulfide (CdS) nanoparticles was developed to enhance the efficiency of organic– inorganic photovoltaic devices. The DPP-CdS hybrids were synthesized via a solution-phase mixing method, resulting in uniform nanoparticle dispersion along polymer fibrils and strong interfacial coupling. Structural characterization confirmed the coexistence of crystalline CdS domains and partially ordered DPP phases, while spectroscopic analyses indicated notable redshifts and band broadening, evidencing electronic interactions at the interface. The hybrid material displayed significantly broadened light absorption across the 400–700 nm range and an optimized optical bandgap of… More >

  • Open Access

    ARTICLE

    Development of AgCuS nanostructures with optimized photocatalytic efficiency under solar irradiation

    S. Younus, N. Amin*, A. Ali, K. Mahmood

    Chalcogenide Letters, Vol.22, No.10, pp. 905-915, 2025, DOI:10.15251/CL.2025.2210.905

    Abstract Wastewater generated by the textile industry contains high levels of various pollutants. Advanced conventional methods, such as chemical and electrical treatments, are effective in addressing these contaminants. However, the significant operational and capital costs associated with these conventional systems limit their accessibility for industrial stakeholders. In contrast, more economically viable methods tend to be less efficient. This study aims to identify a suitable approach for integrating photocatalytic degradation (PCD) with a low-cost method to enhance the cost-effectiveness of wastewater treatment processes in the textile sector. The study utilized silver copper sulfide (AgCuS) nanocomposites as a… More >

  • Open Access

    ARTICLE

    Adsorption behavior and mechanism of heavy metal ions from acid mine drainage using two-dimensional MoS2 nanosheets

    K. Wanga,b,*, G. L. Lianc, Y. F. Qiaod

    Chalcogenide Letters, Vol.22, No.10, pp. 889-904, 2025, DOI:10.15251/CL.2025.2210.889

    Abstract The remediation of acid mine drainage (AMD), characterized by its high concentrations of toxic metal ions and low pH, presents a significant environmental challenge. In this study, exfoliated two-dimensional MoS nanosheets were prepared using a liquid-phase ultrasonication method and evaluated for their efficiency in removing Cd²⁺, Cu²⁺, and Pb²⁺ from aqueous solutions. Detailed structural and morphological analyses confirmed that the exfoliation process significantly enhanced surface area, pore volume, and exposure of reactive sulfur sites. Through isotherm and kinetic modeling analyses, the adsorption behavior was found to align with the Langmuir model and pseudo-second-order kinetic equation, which implies More >

  • Open Access

    ARTICLE

    Nanostructured Self-Organization of Lead Sulphide Quantum Dots by Electrophoretic Deposition (EPD) Technique

    R. Yoga Indra Eniya1, K. Vijayakumar2, B. Vigneashwari3,*

    Chalcogenide Letters, Vol.22, No.11, pp. 971-985, 2025, DOI:10.15251/CL.2025.2211.971

    Abstract Nanocrystals (~16 nm) of semiconducting lead sulphide (PbS) were synthesized using the coprecipitation method, which was characterized for phase and compositional purity. These ultrafine particles of PbS exhibited quantum confinement characteristics, which were revealed by blue-shifting in optical absorption using UV-DRS analysis. These QDs of PbS were driven under the influence of the applied electric field using monodispersed colloidal suspension on the Indium-Tin-Oxide (ITO) substrate using the electrophoretic deposition technique (EPD). The formation of self-organized arrays of PbS quantum dots (QDs) and their stacked assemblies was achieved through EPD. Interestingly, neither complexing agents nor templates More >

Displaying 1-10 on page 1 of 42. Per Page