Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    PROCEEDINGS

    Microstructures and Nanomechanical Properties of Additively Manufactured Metallic Stents

    Enzoh Langi1, Liguo Zhao2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010163

    Abstract Additive manufacturing emerges as an innovative technology to fabricate medical stents used to treat blocked arteries. However, there is a lack of study of underlying microstructure and mechanical properties of additively manufactured stent. In this work, additively manufactured 316L stainless steel stent was investigated, with electrochemical polishing being used to improve the surface finish. Microstructural characterisation was carried out using optical microscopy, scanning electron microscopy, and electron backscatter diffraction. The hardness and elastic modulus were measured using Berkovich nanoindentation, with an emphasis on the effect of grain orientation. In addition, spherical nanoindentation was used to… More >

  • Open Access

    ARTICLE

    Early-Age Properties Development of Recycled Glass Powder Blended Cement Paste: Strengths, Shrinkage, Nanoscale Characteristics, and Environmental Analysis

    Zhihai He1,2, Menglu Shen1, Jinyan Shi3,*, Jingyu Chang1, Víctor Revilla-Cuesta4, Osman Gencel5

    Journal of Renewable Materials, Vol.11, No.4, pp. 1835-1852, 2023, DOI:10.32604/jrm.2023.024887 - 01 December 2022

    Abstract Recycling solid waste in cement-based materials cannot only ease its load on the natural environment but also reduce the carbon emissions of building materials. This study aims to investigate the effect of recycled glass powder (RGP) on the early-age mechanical properties and autogenous shrinkage of cement pastes, where cement is replaced by 10%, 20% and 30% of RGP. In addition, the microstructure and nano-mechanical properties of cement paste with different RGP content and water to binder (W/B) ratio were also evaluated using SEM, MIP and nanoindentation techniques. The results indicate that the early-age autogenous shrinkage… More > Graphic Abstract

    Early-Age Properties Development of Recycled Glass Powder Blended Cement Paste: Strengths, Shrinkage, Nanoscale Characteristics, and Environmental Analysis

  • Open Access

    VIEWPOINT

    Microenvironment and cell mechanics

    VAN-CHIEN BUI*

    BIOCELL, Vol.46, No.7, pp. 1629-1632, 2022, DOI:10.32604/biocell.2022.018364 - 17 March 2022

    Abstract Microenvironment contains biophysical and biochemical elements to maintain survival, growth, proliferation, and differentiation of cells. Any change can lead to cell response to the mechanical forces, which can be described by elasticity. It is an indicator of a cell’s state since it plays an important role in many cellular processes. In many cases, cell elasticity is measured by using discontinuous manner, which may not allow elucidating real-time activity of individual live cells in physiological condition or cell response against microenvironmental changes. I argue that measuring cell elasticity using continuously repetitive nanoindentation technique is important that More >

  • Open Access

    ARTICLE

    Derivation of the Stress-Strain Behavior of the constituents of Bio-Inspired Layered TiO2/PE-Nanocomposites by Inverse Modeling Based on FE-Simulations of Nanoindentation Test

    G. Lasko, I. Schäfer, Z. Burghard, J. Bill, S. Schmauder, U. Weber, D. Galler

    Molecular & Cellular Biomechanics, Vol.10, No.1, pp. 27-42, 2013, DOI:10.3970/mcb.2013.010.027

    Abstract Owing to the apparent simple morphology and peculiar properties, nacre, an iridescent layer, coating of the inner part of mollusk shells, has attracted considerable attention of biologists, material scientists and engineers. The basic structural motif in nacre is the assembly of oriented plate-like aragonite crystals with a ’brick’ (CaCO3 crystals) and ’mortar’ (macromolecular components like proteins) organization. Many scientific researchers recognize that such structures are associated with the excellent mechanical properties of nacre and biomimetic strategies have been proposed to produce new layered nanocomposites. During the past years, increasing efforts have been devoted towards exploiting nacre’s… More >

  • Open Access

    ARTICLE

    The Analytical and Numerical Study on the Nanoindentation of Nonlinear Elastic Materials

    Qiang Zhang, Qing-Sheng Yang1

    CMC-Computers, Materials & Continua, Vol.37, No.2, pp. 123-134, 2013, DOI:10.3970/cmc.2013.037.123

    Abstract In nanoindentation testing of materials, the analytical/numerical models to connect the indentation load, indentation depth and material properties are crucial for the extraction of mechanical properties. This paper studied the methods of extracting the mechanical properties of nonlinear elastic materials and built general relationships of the indentation load and depth of hyperelastic materials combined with the dimensional analysis and finite element method (FEM). Compared with the elastic contact models and other nonlinear elastic contact models, the proposed models can extract the mechanical properties of nonlinear elastic materials under large deformation simply and effectively. More >

  • Open Access

    ARTICLE

    Effective Interfacial Thickness in Dissimilar Materials through Nanoindentation

    S. S. Pulla1, Y. C. Lu2

    CMC-Computers, Materials & Continua, Vol.29, No.3, pp. 263-278, 2012, DOI:10.3970/cmc.2012.029.263

    Abstract The nanoindentation technique is used to quantify the interfaces between dissimilar materials. The interfaces can be generally referred as to the transition regions in polymers due to environmental aging, or the regions between fibers and polymer matrix in composites, or other similar situations. It is proposed to use a nanoindenter equipped with small spherical tip to cross-indent the interfaces of dissimilar materials. The nanoindentation tests were carried out through 3-dimensional finite element simulations with varying properties of the two dissimilar materials, including various combinations of modulus (E1/E2), yield strength (σy1y2), hardening index (n1/n2), and the interface sizes More >

  • Open Access

    ARTICLE

    AFM and Nanoindentation Studies of Bone Nodules on Chitosan-Polygalacturonic Acid-Hydroxyapatite Nanocomposites

    R. Khanna1,2, D. R. Katti1, K. S. Katti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 530-556, 2012, DOI:10.3970/cmes.2012.087.530

    Abstract Here we report a new in situ nanoindentation technique developed to evaluate the composite mechanical behavior of cell-biomaterial construct under physiological conditions over the time scale of bone nodule generation. Using this technique, mechanical behavior of osteoblast cell-substrate interfaces on tissue engineered materials (chitosan-polygalacturonic acid-nanohydroxyapatite (CPH) films) is investigated. Mechanical behavior of cells in the elastic regime over the time scale of cell adhesion (1 day), proliferation (4 days), development (8 days) and maturation (22 days) of bone nodules is evaluated. Our results indicate that the elastic properties of flat cells are higher (indicating stiffer… More >

  • Open Access

    ARTICLE

    Modelling of the Frequency Response to Dynamic Nanoindentation of Soft Hydrated Anisotropic Materials: Application to Articular Cartilage

    Taffetani M.1, Bertarelli E.1,2, Gottardi R.3,4, Raiteri R.5, Vena P.1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 433-460, 2012, DOI:10.3970/cmes.2012.087.433

    Abstract Dynamic nanoindentation is a novel nanomechanical testing that is being increasingly used to characterize the frequency response of viscoelastic materials and of soft hydrated biological tissues at the micrometric and nanometric length scales. This technique is able to provide more information than those obtained by simple indentation; however, its interpretation is still an open issue for complex materials such as the case of anisotropic biological tissues that generally have a high water content. This work presents a numerical model to characterize the frequency response of poro-elastic tissues subjected to harmonic indentation loading with particular regard… More >

  • Open Access

    ARTICLE

    Simulation of the Deformation Mechanisms of Bulk Metallic Glass (BMG) Foam using the Material Point Method

    Jin Ma1, Jay C. Hanan1, Ranga Komanduri1, Hongbing Lu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.4, pp. 349-384, 2012, DOI:10.3970/cmes.2012.086.349

    Abstract Amorphous metallic foams are an exciting class of materials for an array of high impact absorption applications, the mechanical behavior of which is only beginning to be characterized. To determine mechanical properties, guide processing, and engineer the microstructure for impact absorption, simulation of the mechanical properties is necessary as experimental determination alone can be expensive and time consuming. In this investigation, the material point method (MPM) with C1 continuous shape function is used to simulate the response of a bulk metallic glass (BMG) closed-cell foam (Pd42.5Cu30Ni7.5P20) under compression. The BMG foam was also tested experimentally… More >

  • Open Access

    ARTICLE

    Molecular Dynamics Simulations of the Nanoindentation for Aluminum and Copper

    Xiaozhi Tang1, Yafang Guo1, Yu Gao1

    CMC-Computers, Materials & Continua, Vol.23, No.1, pp. 1-8, 2011, DOI:10.3970/cmc.2011.023.001

    Abstract Atomistic simulations were performed to study the nanoindentation for two kinds of FCC metals, aluminum and copper. Due to the higher stacking faults in aluminum than in copper, two different deformation mechanisms were observed in our simulation under exactly the same simulation condition. Aluminum and copper also showed different mechanical properties in the unloading stage. The influence of stacking sequence along the loading direction on deformation mechanism was also investigated in this paper. More >

Displaying 1-10 on page 1 of 21. Per Page