Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access


    Research on Infrared Emissivity and Laser Reflectivity of Sn1−xErxO2 Micro/Nanofibers Based on First-Principles

    Yuanjia Xia, Fang Zhao*, Zhizun Li, Zhaogang Cheng, Jianwei Hu

    Journal of Renewable Materials, Vol.11, No.2, pp. 921-936, 2023, DOI:10.32604/jrm.2022.022840

    Abstract Sn1−xErxO2 (x = 0%, 8%, 16%, 24%) micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate, stannous chloride and polyvinylpyrrolidone (PVP) as raw materials. The target products were characterized by thermogravimetric analyzer, X-ray diffrotometer, fourier transform infrared spectrometer, scanning electron microscope, spectrophotometer and infrared emissivity tester, and the effects of Er3+ doping on its infrared and laser emissivity were studied. At the same time, the Sn1−xErxO2 (x = 0%, 16%) doping models were constructed based on the first principles of density functional theory, and the related optoelectronic properties such as their energy band structure, density of states,… More >

  • Open Access


    Needleless Electrospinning: Reciprocation vs. Rotation

    Xiaoxia Li1,2, Manyu Qian2, Dan Tian3, Jihuan He2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1015-1019, 2021, DOI:10.32604/fdmp.2021.015430

    Abstract Needleless electrospinning is a versatile method to produce nanofibers. In particular, the rotary version of this technique has enjoyed widespread use because there is no need to clean the spinneret. The rotation speed is limited by the potential deviation of the jet due to the centrifugal force. Other limitations are due to the fast volatilization of the solvent from the opened spinning system. In order to overcome these drawbacks, here a novel reciprocating system based on a moving spinning-plate is proposed. The spinning process is implemented in a half-closed system with the spinning-plate immersed in the solution tank. When the… More >

  • Open Access


    Corrosion Protection of 5083 AA in Saline Water by Polyacrylonitrile Nanofibers

    Enas H. Ali, Juman A. Naser*, Zainab W. Ahmed, Taki A. Himdan

    Journal of Renewable Materials, Vol.9, No.11, pp. 1927-1939, 2021, DOI:10.32604/jrm.2021.015624

    Abstract Polymeric nanofibers are a promising technology to protect the metal surfaces from corrosion. Through the literature search, the use of polyacrylonitrile nanofibres (PANNFs) as a corrosion inhibitor coating for aluminum alloys has not been evaluated. This work includes the development of a new, lightweight, high surface area and efficient coating of PANNFs that produced using electrospinning process to resist the corrosion of aluminum alloys (AA5083) which immersed in 0.6 M NaCl at alkaline medium (pH = 12) and acidic medium (pH = 1) at a range of temperatures (293–323) K. The PANNFs coating was successfully deposited on AA 5083 specimens,… More >

  • Open Access


    Nanofibrillation of Bacterial Cellulose Using High-Pressure Homogenization and Its Films Characteristics

    Heru Suryanto1,2,*, Muhamad Muhajir1, Bili Darnanto Susilo1, Yanuar Rohmat Aji Pradana1, Husni Wahyu Wijaya2,3, Abu Saad Ansari4, Uun Yanuhar5

    Journal of Renewable Materials, Vol.9, No.10, pp. 1717-1728, 2021, DOI:10.32604/jrm.2021.015312

    Abstract The microstructure of bacterial cellulose nanofibers (BCNs) film affects its characteristic. One of several means to engineer the microstructure is by changing the BCNs size and fiber distribution through a high-pressure homogenizer (HPH) process. This research aimed to find out the effects of repetition cycles on HPH process towards BCNs film characteristics. To prepare BCNs films, a pellicle from the fermentation of pineapple peels waste with Acetobacter xylinum (A. xylinum) was extracted, followed by crushing the pellicle with a high-speed blender, thereafter, homogenized using HPH at 150 bar pressure with variations of 5, 10, 15, and 20 cycles. The BCNs… More >

  • Open Access


    Preparation and Characterization of Electrospun Polylactic Acid Micro/Nanofibers under Different Solvent Conditions

    Hao Dou1,2,*, Hongxia Liu1,2, Feng Wang1,2, Yanli Sun1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.3, pp. 629-638, 2021, DOI:10.32604/fdmp.2021.015612

    Abstract Electrospinning is a versatile and popular method for the fabrication of ultrafine fibers and many parameters in electrospinning can be adjusted when ideal micro/nanofibers are required. In particular, the selection of a proper solvent condition is a fundamental and crucial step to produce electrospun ultrafine fibers. In this study, a commonly used biomaterial, polylactic acid (PLA), was dissolved in 7 different solvents and PLA micro/nanofibers were prepared by electrospinning. The morphology, porosity, mechanical property and static contact angle were characterized to determine the quality of the obtained product. The results show that different solvent conditions have a significant effect on… More >

  • Open Access


    Improving the Sound Absorption Properties of Flexible Polyurethane (PU) Foam using Nanofibers and Nanoparticles

    Roohalah Hajizadeh1, Ali Khavanin2,*, Mohammad Barmar3, Ahmad Jonidi Jafari4, Somayeh Farhang Dehghan5

    Sound & Vibration, Vol.53, No.5, pp. 207-222, 2019, DOI:10.32604/sv.2019.06523

    Abstract Polyurethane foam as the most well-known absorbent materials has a suitable absorption coefficient only within a limited frequency range. The aim of this study was to improve the sound absorption coefficient of flexible polyurethane (PU) foam within the range of various frequencies using clay nanoparticles, polyacrylonitrile nanofibers, and polyvinylidene fluoride nanofibers. The response surface method was used to determine the effect of addition of nanofi- bers of PAN and PVDF, addition of clay nanoparticles, absorbent thickness, and air gap on the sound absorption coefficient of flexible polyurethane foam (PU) across different frequency ranges. The absorption coefficient of the samples was… More >

  • Open Access


    Potential detoxification of aflatoxin B2 using Kluyveromyces lactis and Saccharomyces cerevisiae integrated nanofibers


    BIOCELL, Vol.41, No.2-3, pp. 67-73, 2017, DOI:10.32604/biocell.2017.41.067

    Abstract Current investigation has shown that human exposure to aflatoxins is not limited to the administration of contaminated cereals, but water is another possible source. This study was aimed to design easily applicable method to eliminate aflatoxin B2 (AFB2) from contaminated drinking water. Electrospinning has been used for preparation of probiotic-coated polyvinyl alcohol (PVA) and cellulose acetate (CA) nanofibers. Both of these hybrid nanofibers were studied by scanning electron microscopy (SEM) and Fourier-transformed infrared spectroscopy (FT-IR). SEM showed the proper coating of probiotic strains (Kluyveromyces lactis CBS 2359 and Saccharomyces cerevisiae ATCC 9763) on both nanofiber types. Different areas (1-5 cm2)… More >

  • Open Access


    Isolation and Characterization of Cellulose Nanofibers from Argentine Tacuara Cane (Guadua Angustifolia Kunth)

    C. A. Rodríguez Ramírez2, Fleur Rol3, Julien Bras3, Alain Dufresne3, Nancy Lis Garcia2,*, Norma D´Accorso1,2,*

    Journal of Renewable Materials, Vol.7, No.4, pp. 373-381, 2019, DOI:10.32604/jrm.2019.04236

    Abstract New trends in the area of material improvement are the use of natural nano-charges from renewable biomass, improving the value and sustainability of our country’s natural products. Bamboo is widely used in many countries of the world, although in Argentina, despite being commercialized and exported for the manufacture of wood floors, it goes unnoticed despite having native species. Therefore, researchers identified the native and exotic species present in our country and are working on novel uses. In this context, it is proposed the Argentine Tacuara Cane (Guadua Angustifolia Kunth), endemic plant as a new source of nanocellulosic materials, where stem… More >

  • Open Access


    Nanomechanical Properties of Electrospun PLGA Nanofibers

    X. Xin1, M. Hussain1, J. Mao1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 187-188, 2006, DOI:10.32604/mcb.2006.003.187

    Abstract This article has no abstract. More >

  • Open Access


    Lightweight Biobased Polyurethane Nanocomposite Foams Reinforced with Pineapple Leaf Nanofibers (PLNFs)

    Xiaojian Zhou1,2, Hui Wang1, Jun Zhang2, Zhifeng Zheng1, Guanben Du1,2,*

    Journal of Renewable Materials, Vol.6, No.1, pp. 68-74, 2018, DOI:10.7569/JRM.2017.634150

    Abstract Pineapple leaf nanofibers (PLNFs) extracted from pineapple leaf fiber were used for reinforcing biobased polyurethane foam (BPU). The dispersion performance of PLNF in the foaming mixture system, nanocomposite foaming behavior, cell morphology, cell size, density, compressive strength and dimensional stability were investigated. The viscosity of the mixtures increased with increasing the PLNF content. The addition of a tiny amount of PLNF did not influence the exothermic temperature of the foam system, but reduced the expansion and gel time of the nanocomposite foams. This reduced time was found to increase the production efficiency. Scanning electron microscopy (SEM) images showed that the… More >

Displaying 1-10 on page 1 of 17. Per Page  

Share Link