Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ARTICLE

    Local Electroelastic Field and Effective Electroelastic Moduli of Piezoelectric Nanocomposites with Interface Effect

    Shasha Yang1, Shuling Hu1, Shengping Shen1,2

    CMC-Computers, Materials & Continua, Vol.29, No.3, pp. 279-298, 2012, DOI:10.3970/cmc.2012.029.279

    Abstract Due to the large ratio of surface area to volume in nanoscale objects, the property of surfaces and interfaces likely becomes a prominent factor in controlling the behavior of nano-heterogeneous materials. In this work, based on the Gurtin-Murdoch surface/interface elastic theory, a distinct expression is derived for embedded nano-inclusion in an infinite piezoelectric matrix coupled with interface effect. For the problem of a spherical inclusion in transversely isotropic piezoelectric medium, we reach a conclusion that the elastic and electric field are uniform when eigen-strain and eigen-electric field imposed on the inclusion are uniform even in the presence of the interface… More >

  • Open Access

    ARTICLE

    Statistical Analysis of Macromolecular Chains in the Space Filled by Nanoparticles

    J. Zidek1,2, J. Kucera1, J. Jancar1,2

    CMC-Computers, Materials & Continua, Vol.28, No.3, pp. 213-230, 2012, DOI:10.3970/cmc.2012.028.213

    Abstract The paper presents a combination of worm-like chain numerical models and one with a finite set of nano-particles. The primary objective of the models was to analyze the distribution of space in a system filled by particles. Information on the distribution of space was compared to properties of chains inside the set of particles. The set of nanoparticles was constructed with a tool generating a finite set of particles that is randomly distributed in a given space. The particles have a prescribed volume fraction and uniform size. First, the proportions of chains and particles were compared. The length of chain… More >

  • Open Access

    ARTICLE

    Effect of CNT Agglomeration on the Electrical Conductivity and Percolation Threshold of Nanocomposites: A Micromechanics-based Approach

    B.J. Yang1, K.J. Cho1, G.M. Kim1, H.K. Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.5, pp. 343-365, 2014, DOI:10.3970/cmes.2014.103.343

    Abstract The addition of carbon nanotubes (CNTs) to a matrix material is expected to lead to an increase in the effective electrical properties of nanocomposites. However, a CNT entanglement caused by the matrix viscosity and the high aspect ratio of the nanotubes often inhibits the formation of a conductive network. In the present study, the micromechanics-based model is utilized to investigate the effect of CNT agglomeration on the electrical conductivity and percolation threshold of nanocomposites. A series of parametric studies considering various shapes and curviness distributions of CNTs are carried out to examine the effects of entanglement on the electrical performance… More >

  • Open Access

    ARTICLE

    Application of a Hybrid Mesh-free Method Based on Generalized Finite Difference (GFD) Method for Natural Frequency Analysis of Functionally Graded Nanocomposite Cylinders Reinforced by Carbon Nanotubes

    Seyed Mahmoud Hosseini 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.1, pp. 1-29, 2013, DOI:10.3970/cmes.2013.095.001

    Abstract In this article, the effects of carbon nanotubes distributions on natural frequency are studied for a functionally graded nanocomposite thick hollow cylinder reinforced by single-walled carbon nanotubes using a hybrid mesh-free method. The FG nanocomposite cylinder is excited by a shock loading, which is applied on the inner surface of cylinder. The first natural frequency is obtained for various nonlinear grading patterns of distributions of the aligned carbon nanotubes. The effects of various nonlinear grading patterns on natural frequency are obtained and discussed in details. The presented hybrid mesh-free method is based on the generalized finite difference (GFD) method for… More >

  • Open Access

    ARTICLE

    Modeling Imperfect Interfaces in the Material Point Method using Multimaterial Methods

    J. A. Nairn1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.3, pp. 271-299, 2013, DOI:10.32604/cmes.2013.092.271

    Abstract The “multimaterial” version of the material point method (MPM) extrapolates each material to its own velocity field on a background grid. By reconciling momenta on nodes interacting with two or more materials, MPM is able to automatically handle contact without any need for special contact elements. This paper extends multimaterial MPM to automatically handle imperfect interfaces between materials as well. The approach is to evaluate displacement discontinuity on multimaterial nodes and then add internal forces and interfacial energy determined by an imperfect interface traction law. The concept is simple, but implementation required numerous corrections to make the analysis mesh independent,… More >

  • Open Access

    ARTICLE

    AFM and Nanoindentation Studies of Bone Nodules on Chitosan-Polygalacturonic Acid-Hydroxyapatite Nanocomposites

    R. Khanna1,2, D. R. Katti1, K. S. Katti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 530-556, 2012, DOI:10.3970/cmes.2012.087.530

    Abstract Here we report a new in situ nanoindentation technique developed to evaluate the composite mechanical behavior of cell-biomaterial construct under physiological conditions over the time scale of bone nodule generation. Using this technique, mechanical behavior of osteoblast cell-substrate interfaces on tissue engineered materials (chitosan-polygalacturonic acid-nanohydroxyapatite (CPH) films) is investigated. Mechanical behavior of cells in the elastic regime over the time scale of cell adhesion (1 day), proliferation (4 days), development (8 days) and maturation (22 days) of bone nodules is evaluated. Our results indicate that the elastic properties of flat cells are higher (indicating stiffer response, after 4 days, as… More >

  • Open Access

    ARTICLE

    Normal Stresses in an Ifnitite Elastic Body with a Locally Curved and Hollow Nanofiber

    K. S. Alan1

    CMC-Computers, Materials & Continua, Vol.44, No.1, pp. 1-21, 2014, DOI:10.3970/cmc.2014.044.001

    Abstract In the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically nonlinear exact equations of the theory of elasticity, the method developed for the determination of the stress distribution in the nanocomposites with unidirectional locally curved and hollow nanofibers is used to investigate the normal stresses acting along the nanofibers. Furthermore, it is assumed that the body is loaded at infinity by uniformly distributed normal forces which act along the nanofibers and the crosssection of the nanofibers and normal to its axial line, is a circle of constant radius along the entire nanofiber length. For… More >

  • Open Access

    ARTICLE

    Effect of Interface Energy on Size-Dependent Effective Dynamic Properties of Nanocomposites with Coated Nano-Fibers

    Xue-Qian Fang1,2, Ming-Juan Huang1, Jun-Ying Wu3, Guo-Quan Nie1, Jin-Xi Liu1

    CMC-Computers, Materials & Continua, Vol.33, No.2, pp. 199-211, 2013, DOI:10.3970/cmc.2013.033.199

    Abstract In nanocomposites, coated nano-fibers are often used to obtain good performance, and the high interface-to-volume ratio shows great effect on the macroscopic effective properties of nanocomposites. In this study, the effect of interface energy around the unidirectional coated nanofibers on the effective dynamic effective properties is explicitly addressed by effective medium method and wave function expansion method. The multiple scattering resulting from the series coating nano-fibers is reduced to the problem of one typical nano-fiber in the effective medium. The dynamic effective shear modulus is obtained on the basis of the derived imperfect interface conditions. Analyses show that the effect… More >

  • Open Access

    ARTICLE

    Numerical Simulations on Piezoresistivity of CNT/Polymer Based Nanocomposites

    Alamusi1, Y.L. Liu1, N. Hu1,2

    CMC-Computers, Materials & Continua, Vol.20, No.2, pp. 101-118, 2010, DOI:10.3970/cmc.2010.020.101

    Abstract In this work, we propose a 3 dimensional (3D) numerical model to predict the piezoresistivity behaviors of a nanocomposite material made from an insulating polymer filled by carbon nanotubes (CNTs). This material is very hopeful for its application in highly sensitive strain sensor by measuring its piezoresistivity, i.e., the ratio of resistance change versus applied strain. In this numerical approach, a 3D resistor network model is firstly proposed to predict the electrical conductivity of the nanocomposite with a large amount of randomly dispersed CNTs under the zero strain state. By focusing on the fact that the piezoresistivity of the nanocomposite… More >

  • Open Access

    ARTICLE

    Buckling and Postbuckling Behavior of Functionally Graded Nanotube-Reinforced Composite Plates in Thermal Environments

    Hui- Shen1,2, Zheng Hong Zhu3

    CMC-Computers, Materials & Continua, Vol.18, No.2, pp. 155-182, 2010, DOI:10.3970/cmc.2010.018.155

    Abstract This paper investigates the buckling and postbuckling of simply supported, nanocomposite plates with functionally graded nanotube reinforcements subjected to uniaxial compression in thermal environments. The nanocomposite plates are assumed to be functionally graded in the thickness direction using single-walled carbon nanotubes (SWCNTs) serving as reinforcements and the plates' effective material properties are estimated through a micromechanical model. The higher order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity is used to model the composite plates and a two-step perturbation technique is performed to determine the buckling loads and postbuckling equilibrium paths. Numerical results for perfect and imperfect,… More >

Displaying 41-50 on page 5 of 51. Per Page