Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Novel Approach Deep Learning Framework for Automatic Detection of Diseases in Retinal Fundus Images

    Kachi Anvesh1,2, Bharati M. Reshmi2,3, Shanmugasundaram Hariharan4, H. Venkateshwara Reddy5, Murugaperumal Krishnamoorthy6, Vinay Kukreja7, Shih-Yu Chen8,9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1485-1517, 2025, DOI:10.32604/cmes.2025.063239 - 30 May 2025

    Abstract Automated classification of retinal fundus images is essential for identifying eye diseases, though there is earlier research on applying deep learning models designed especially for detecting tessellation in retinal fundus images. This study classifies 4 classes of retinal fundus images with 3 diseased fundus images and 1 normal fundus image, by creating a refined VGG16 model to categorize fundus pictures into tessellated, normal, myopia, and choroidal neovascularization groups. The approach utilizes a VGG16 architecture that has been altered with unique fully connected layers and regularization using dropouts, along with data augmentation techniques (rotation, flip, and… More >

  • Open Access

    ARTICLE

    Measurement of Myopia and Normal Human Choroidal Thickness Using Spectral Domain Optical Coherence Tomography

    Jia Qin1,2,3,4,5, Lin An1,2,3,4,5,*

    Molecular & Cellular Biomechanics, Vol.19, No.3, pp. 151-157, 2022, DOI:10.32604/mcb.2022.018578 - 14 June 2022

    Abstract Myopia is a common ophthalmic deficiency. The structure and function of choroid layer is assumed to be associated with myopia. In this study, a laboratory developed spectral domain optical coherence tomography scanning system is used to image human eyes. The axial resolution of the system is about 7 μm, and the acquisition rate is 100 kHz. Firstly, a cross-sectional image was acquired by averaging 100 images from imaging posterior segment of each eye. The choroid thickness was measured by 11 discrete points. The average thickness of normal human eyes was (0.296 ± 0.126) mm, whereas… More >

  • Open Access

    ABSTRACT

    Biomechanical Characterization of Mouse Sclera in Myopia

    C. Ross Ethier1,*, Dillon M. Brown1, Erica Landis2, Machelle T. Pardue1,2,3

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 61-63, 2019, DOI:10.32604/mcb.2019.07377

    Abstract Myopia, or near-sightedness, is a common ocular condition in which the eye elongates excessively. Development of myopia is associated with, and thought to be facilitated by, changes in the biomechanical properties of the sclera (the white part of the eye). We characterized scleral biomechanics in a mouse model of myopia using unconfirmed compression testing and biphasic theory to extract scleral permeability, in- plane scleral tensile modulus, and through-plane scleral compressive modulus. We find that myopia reduces in-plane tensile modulus and permeability, consistent with scleral tissue remodeling. Such biomechanical outcome measures may offer advantages over more More >

Displaying 1-10 on page 1 of 3. Per Page