Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Advancing Autoencoder Architectures for Enhanced Anomaly Detection in Multivariate Industrial Time Series

    Byeongcheon Lee1, Sangmin Kim1, Muazzam Maqsood2, Jihoon Moon3,*, Seungmin Rho1,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1275-1300, 2024, DOI:10.32604/cmc.2024.054826 - 15 October 2024

    Abstract In the context of rapid digitization in industrial environments, how effective are advanced unsupervised learning models, particularly hybrid autoencoder models, at detecting anomalies in industrial control system (ICS) datasets? This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things (IoT) devices, which can significantly improve the reliability and safety of these systems. In this paper, we propose a hybrid autoencoder model, called ConvBiLSTM-AE, which combines convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) to More >

  • Open Access

    ARTICLE

    Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things

    Mengmeng Zhao1,2,3, Haipeng Peng1,2,*, Lixiang Li1,2, Yeqing Ren1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2815-2837, 2024, DOI:10.32604/cmc.2024.053765 - 15 August 2024

    Abstract In the Industrial Internet of Things (IIoT), sensors generate time series data to reflect the working state. When the systems are attacked, timely identification of outliers in time series is critical to ensure security. Although many anomaly detection methods have been proposed, the temporal correlation of the time series over the same sensor and the state (spatial) correlation between different sensors are rarely considered simultaneously in these methods. Owing to the superior capability of Transformer in learning time series features. This paper proposes a time series anomaly detection method based on a spatial-temporal network and… More >

  • Open Access

    ARTICLE

    A Multivariate Relevance Frequency Analysis Based Feature Selection for Classification of Short Text Data

    Saravanan Arumugam*

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 989-1008, 2024, DOI:10.32604/csse.2024.051770 - 17 July 2024

    Abstract Text mining presents unique challenges in extracting meaningful information from the vast volumes of digital documents. Traditional filter feature selection methods often fall short in handling the complexities of short text data. To address this issue, this paper presents a novel approach to feature selection in text classification, aiming to overcome challenges posed by high dimensionality and reduced accuracy in the face of increasing digital document volumes. Unlike traditional filter feature selection techniques, the proposed method, Multivariate Relevance Frequency Analysis, offers a tailored solution for diverse text data types. By integrating positive, negative, and dependency… More >

  • Open Access

    ARTICLE

    A Novel Graph Structure Learning Based Semi-Supervised Framework for Anomaly Identification in Fluctuating IoT Environment

    Weijian Song1,, Xi Li1,, Peng Chen1,*, Juan Chen1, Jianhua Ren2, Yunni Xia3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3001-3016, 2024, DOI:10.32604/cmes.2024.048563 - 08 July 2024

    Abstract With the rapid development of Internet of Things (IoT) technology, IoT systems have been widely applied in healthcare, transportation, home, and other fields. However, with the continuous expansion of the scale and increasing complexity of IoT systems, the stability and security issues of IoT systems have become increasingly prominent. Thus, it is crucial to detect anomalies in the collected IoT time series from various sensors. Recently, deep learning models have been leveraged for IoT anomaly detection. However, owing to the challenges associated with data labeling, most IoT anomaly detection methods resort to unsupervised learning techniques.… More >

  • Open Access

    ARTICLE

    A Memory-Guided Anomaly Detection Model with Contrastive Learning for Multivariate Time Series

    Wei Zhang1, Ping He2,*, Ting Li2, Fan Yang1, Ying Liu3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1893-1910, 2023, DOI:10.32604/cmc.2023.044253 - 29 November 2023

    Abstract Some reconstruction-based anomaly detection models in multivariate time series have brought impressive performance advancements but suffer from weak generalization ability and a lack of anomaly identification. These limitations can result in the misjudgment of models, leading to a degradation in overall detection performance. This paper proposes a novel transformer-like anomaly detection model adopting a contrastive learning module and a memory block (CLME) to overcome the above limitations. The contrastive learning module tailored for time series data can learn the contextual relationships to generate temporal fine-grained representations. The memory block can record normal patterns of these… More >

  • Open Access

    ARTICLE

    3-D Gait Identification Utilizing Latent Canonical Covariates Consisting of Gait Features

    Ramiz Gorkem Birdal*, Ahmet Sertbas

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2727-2744, 2023, DOI:10.32604/cmc.2023.032069 - 08 October 2023

    Abstract Biometric gait recognition is a lesser-known but emerging and effective biometric recognition method which enables subjects’ walking patterns to be recognized. Existing research in this area has primarily focused on feature analysis through the extraction of individual features, which captures most of the information but fails to capture subtle variations in gait dynamics. Therefore, a novel feature taxonomy and an approach for deriving a relationship between a function of one set of gait features with another set are introduced. The gait features extracted from body halves divided by anatomical planes on vertical, horizontal, and diagonal… More >

  • Open Access

    ARTICLE

    Unsupervised Anomaly Detection Approach Based on Adversarial Memory Autoencoders for Multivariate Time Series

    Tianzi Zhao1,2,3,4, Liang Jin1,2,3,*, Xiaofeng Zhou1,2,3, Shuai Li1,2,3, Shurui Liu1,2,3,4, Jiang Zhu1,2,3

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 329-346, 2023, DOI:10.32604/cmc.2023.038595 - 08 June 2023

    Abstract The widespread usage of Cyber Physical Systems (CPSs) generates a vast volume of time series data, and precisely determining anomalies in the data is critical for practical production. Autoencoder is the mainstream method for time series anomaly detection, and the anomaly is judged by reconstruction error. However, due to the strong generalization ability of neural networks, some abnormal samples close to normal samples may be judged as normal, which fails to detect the abnormality. In addition, the dataset rarely provides sufficient anomaly labels. This research proposes an unsupervised anomaly detection approach based on adversarial memory… More >

  • Open Access

    ARTICLE

    Fine-Grained Multivariate Time Series Anomaly Detection in IoT

    Shiming He1,4, Meng Guo1, Bo Yang1, Osama Alfarraj2, Amr Tolba2, Pradip Kumar Sharma3, Xi’ai Yan4,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5027-5047, 2023, DOI:10.32604/cmc.2023.038551 - 29 April 2023

    Abstract Sensors produce a large amount of multivariate time series data to record the states of Internet of Things (IoT) systems. Multivariate time series timestamp anomaly detection (TSAD) can identify timestamps of attacks and malfunctions. However, it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis, a process referred to as fine-grained anomaly detection (FGAD). Although further FGAD can be extended based on TSAD methods, existing works do not provide a quantitative evaluation, and the performance is unknown. Therefore, to tackle the FGAD problem, this paper first verifies that… More >

  • Open Access

    ARTICLE

    Deep Learning for Multivariate Prediction of Building Energy Performance of Residential Buildings

    Ibrahim Aliyu1, Tai-Won Um2, Sang-Joon Lee3, Chang Gyoon Lim4,*, Jinsul Kim1,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5947-5964, 2023, DOI:10.32604/cmc.2023.037202 - 29 April 2023

    Abstract In the quest to minimize energy waste, the energy performance of buildings (EPB) has been a focus because building appliances, such as heating, ventilation, and air conditioning, consume the highest energy. Therefore, effective design and planning for estimating heating load (HL) and cooling load (CL) for energy saving have become paramount. In this vein, efforts have been made to predict the HL and CL using a univariate approach. However, this approach necessitates two models for learning HL and CL, requiring more computational time. Moreover, the one-dimensional (1D) convolutional neural network (CNN) has gained popularity due… More >

  • Open Access

    ARTICLE

    Graph Construction Method for GNN-Based Multivariate Time-Series Forecasting

    Wonyong Chung, Jaeuk Moon, Dongjun Kim, Eenjun Hwang*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5817-5836, 2023, DOI:10.32604/cmc.2023.036830 - 29 April 2023

    Abstract Multivariate time-series forecasting (MTSF) plays an important role in diverse real-world applications. To achieve better accuracy in MTSF, time-series patterns in each variable and interrelationship patterns between variables should be considered together. Recently, graph neural networks (GNNs) has gained much attention as they can learn both patterns using a graph. For accurate forecasting through GNN, a well-defined graph is required. However, existing GNNs have limitations in reflecting the spectral similarity and time delay between nodes, and consider all nodes with the same weight when constructing graph. In this paper, we propose a novel graph construction More >

Displaying 1-10 on page 1 of 37. Per Page