Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    PROCEEDINGS

    Modelling and Simulation on Deformation Behaviour and Strengthening Mechanism of Multi-Principal Element Alloys

    Yang Chen1, Baobin Xie1, Weizheng Lu1, Jia Li1,*, Qihong Fang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011624

    Abstract In order to accurately predict and evaluate the mechanical properties of multi-principal element alloys (MPEAs), some new models and simulation methods need to be developed to solve the problems caused by its unique natural characteristics, such as severe lattice distortion. The existing models are based on the development of low concentration alloys, and cannot be well applied to MPEAs. Here, we develop i) the random field theory informed discrete dislocation dynamics simulations based on high-resolution transmission electron microscopy, to systematically clarify the role of heterogeneous lattice strain on the complex interactions between the dislocation loop… More >

  • Open Access

    ARTICLE

    Multiscale Simulation of Microstructure Evolution during Preparation and Service Processes of Physical Vapor Deposited c-TiAlN Coatings

    Yehao Long, Jing Zhong*, Tongdi Zhang, Li Chen, Lijun Zhang*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3435-3453, 2024, DOI:10.32604/cmc.2024.051629 - 20 June 2024

    Abstract Physical Vapor Deposited (PVD) TiAlN coatings are extensively utilized as protective layers for cutting tools, renowned for their excellent comprehensive performance. To optimize quality control of TiAlN coatings for cutting tools, a multi-scale simulation approach is proposed that encompasses the microstructure evolution of coatings considering the entire preparation and service lifecycle of PVD TiAlN coatings. This scheme employs phase-field simulation to capture the essential microstructure of the PVD-prepared TiAlN coatings. Moreover, cutting simulation is used to determine the service temperature experienced during cutting processes at varying rates. Cahn-Hilliard modeling is finally utilized to consume the More >

  • Open Access

    ARTICLE

    Geometrically-Compatible Dislocation Pattern and Modeling of Crystal Plasticity in Body-Centered Cubic (BCC) Crystal at Micron Scale

    Yuxi Xie, Shaofan Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1419-1440, 2021, DOI:10.32604/cmes.2021.016756 - 25 November 2021

    Abstract The microstructure of crystal defects, e.g., dislocation patterns, are not arbitrary, and it is possible that some of them may be related to the microstructure of crystals itself, i.e., the lattice structure. We call those dislocation patterns or substructures that are related to the corresponding crystal microstructure as the Geometrically Compatible Dislocation Patterns (GCDP). Based on this notion, we have developed a Multiscale Crystal Defect Dynamics (MCDD) to model crystal plasticity without or with minimum empiricism. In this work, we employ the multiscale dislocation pattern dynamics, i.e., MCDD, to simulate crystal plasticity in body-centered cubic (BCC) single More >

  • Open Access

    ARTICLE

    A Multiscale Method Based on the Fibre Configuration Field, IRBF and DAVSS for the Simulation of Fibre Suspension Flows

    H.Q. Nguyen1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.4, pp. 361-403, 2015, DOI:10.3970/cmes.2015.109.361

    Abstract In this paper, an Integrated Radial Basis Function (IRBF)-based multiscale method is used to simulate the rheological properties of dilute fibre suspensions. For the approach, a fusion of the IRBF computation scheme, the Discrete Adaptive Viscoelastic Stress Splitting (DAVSS) technique and the Fibre Configuration Field has been developed to investigate the evolution of the flow and the fibre configurations through two separate computational processes. Indeed, the flow conservation equations, which are expressed in vorticity-stream function formulation, are solved using IRBF-based numerical schemes while the evolution of fibre configuration fields governed by the Jeffery’s equation is… More >

  • Open Access

    ABSTRACT

    Multiscale simulation for long chain polymer using MD/continuum hybrid method

    Y. Senda, M. Fujio, S. Shimamura, J. Blomqvist, R. M Nieminen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.3, pp. 93-94, 2011, DOI:10.3970/icces.2011.018.093

    Abstract Atomistic molecular dynamics simulation for"polymer melts has been performed inten-sively and revealed the dynamical behavior of atomistic"chain structure in the melt. These atomistic"calculations, however, have been limited by the massive computational costs because of macroscopic properties of long chain polymer. It would be highly de-sirable to use a multiscale approach covering atomistic and macroscopic behavior of the polymer melt. We have developed computational method coupling atomic model and continuum model [1] and applied the method to polymer melt consisted of the long chain polymers. The polymer molecule is coarse-grained into meso-scopic model by so-called spring- More >

  • Open Access

    ARTICLE

    Application of An Atomistic Field Theory to Nano/Micro Materials Modeling and Simulation

    Xiaowei Zeng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.3&4, pp. 183-202, 2011, DOI:10.3970/cmes.2011.074.183

    Abstract This paper presents an atomistic field theory and its application in modeling and simulation of nano/micro materials. Atomistic formulation and finite element implementation of the atomistic field theory is briefly introduced. Numerical simulations based on the field theory are performed to investigate the material behaviors of bcc iron at coarse-grained scale and we have obtained the mechanical strength and elastic modulus, which are in good agreement with results by first principles calculations. Also the nanoscale deformation and failure mechanism are revealed in bcc iron nanorods under simple tension. It is interesting to observe that under More >

  • Open Access

    ABSTRACT

    Multiscale simulation of crack propagation using variable-node finite elements

    Dongwoo Sohn1, Jae Hyuk Lim2, Young-Sam Cho3, Seyoung Im1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.2, pp. 53-54, 2009, DOI:10.3970/icces.2009.010.053

    Abstract A novel multiscale finite element (FE) scheme is proposed for a simulation of crack propagation in the heterogeneous media including randomly distributed microstructures, such as voids, rigid fibers. A fine scale mesh is employed to capture the singularity of the crack tip and the effect of microstructures at the vicinity of crack tip. On the other hand, a region far from the crack tip is composed of coarse scale mesh, wherein the effect of the microstructures is averaged through the homogenization theory. An interface between the fine scale mesh and the coarse scale mesh is More >

  • Open Access

    ARTICLE

    Coupled Atomistic/Continuum Simulation based on Extended Space-Time Finite Element Method

    Shardool U. Chirputkar1, Dong Qian2

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 185-202, 2008, DOI:10.3970/cmes.2008.024.185

    Abstract A multiscale method based on the extended space-time finite element method is developed for the coupled atomistic/continuum simulation of nanoscale material systems. Existing single scale approach such as the finite element method has limited capability of representing the fine scale physics in both the spatial and temporal domains. This is a major disadvantage for directly incorporating FEM in coupled atomistic/continuum simulations as it results in errors such as spurious wave reflections at the atomistic/continuum interface. While numerous efforts have been devoted to eliminating the interfacial mismatch effects, less attention has been paid to developing fine More >

  • Open Access

    ARTICLE

    Materials Modeling from Quantum Mechanics to The Mesoscale

    G. Fitzgerald1, G. Goldbeck-Wood2, P. Kung1, M. Petersen1, L. Subramanian1, J. Wescott2

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 169-184, 2008, DOI:10.3970/cmes.2008.024.169

    Abstract Molecular modeling has established itself as an important component of applied research in areas such as drug discovery, catalysis, and polymers. Algorithmic improvements to these methods coupled with the increasing speed of computational hardware are making it possible to perform predictive modeling on ever larger systems. Methods are now available that are capable of modeling hundreds of thousands of atoms, and the results can have a significant impact on real-world engineering problems. The article reviews some of the modeling methods currently in use; provides illustrative examples of applications to challenges in sensors, fuel cells, and More >

  • Open Access

    ARTICLE

    Multiscale Simulation of Nanoindentation Using the Generalized Interpolation Material Point (GIMP) Method, Dislocation Dynamics (DD) and Molecular Dynamics (MD)

    Jin Ma, Yang Liu, Hongbing Lu, Ranga Komanduri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.1, pp. 41-56, 2006, DOI:10.3970/cmes.2006.016.041

    Abstract A multiscale simulation technique coupling three scales, namely, the molecular dynamics (MD) at the atomistic scale, the discrete dislocations at the meso scale and the generalized interpolation material point (GIMP) method at the continuum scale is presented. Discrete dislocations are first coupled with GIMP using the principle of superposition (van der Giessen and Needleman (1995)). A detection band seeded in the MD region is used to pass the dislocations to and from the MD simulations (Shilkrot, Miller and Curtin (2004)). A common domain decomposition scheme for each of the three scales was implemented for parallel More >

Displaying 1-10 on page 1 of 14. Per Page