Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    PROCEEDINGS

    Multiscale Modeling and Application of Strain-Dependent Piezoresistive Behavior in Porous MWCNT/Polymer Nanocomposites

    Zefu Li1, Weidong Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011671

    Abstract For composite materials incorporating porous structures with multi-walled carbon nanotubes (MWCNTs), the effects of pores and MWCNT agglomeration significantly impact electrical conductivity. Theoretical modeling of the piezoresistive behavior is crucial for understanding the electromechanical response of porous MWCNT/polymer nanocomposites. Currently, there is limited theoretical modeling that considers the combined effects of porosity and MWCNT agglomeration on the electrical conductivity and piezoresistive performance of porous MWCNT/polymer composites. Addressing this gap, this paper presents a multiscale modeling approach for the strain-dependent piezoresistive behavior of porous MWCNT/polymer nanocomposites. The model considers the influence of porosity and MWCNT agglomeration, More >

  • Open Access

    PROCEEDINGS

    Hierarchical Multiscale Modeling of Thaw-Induced Landslides in Permafrost

    Shiwei Zhao1,*, Hao Chen2, Jidong Zhao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09965

    Abstract With global warming, thaw-induced landslides occur more frequently in permafrost, which not only threaten the safety of infrastructures as general geohazards but also worsen global warming due to carbon release. This work presents a novel computational framework to model thaw-induced landslides from a multiscale perspective. The proposed approach can capture the thermal-mechanical (TM) response of frozen soils at the particulate scale by using discrete element method (DEM). The micromechanics-based TM model is superior to capturing the sudden crash of soil skeletons caused by thaw-induced cementation loss between soil grains. The DEM-simulated TM response is then More >

  • Open Access

    ARTICLE

    Discontinuous-Galerkin-Based Analysis of Traffic Flow Model Connected with Multi-Agent Traffic Model

    Rina Okuyama1, Naoto Mitsume2, Hideki Fujii1, Hideaki Uchida1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 949-965, 2021, DOI:10.32604/cmes.2021.015773 - 11 August 2021

    Abstract As the number of automobiles continues to increase year after year, the associated problem of traffic congestion has become a serious societal issue. Initiatives to mitigate this problem have considered methods for optimizing traffic volumes in wide-area road networks, and traffic-flow simulation has become a focus of interest as a technique for advance characterization of such strategies. Classes of models commonly used for traffic-flow simulations include microscopic models based on discrete vehicle representations, macroscopic models that describe entire traffic-flow systems in terms of average vehicle densities and velocities, and mesoscopic models and hybrid (or multiscale)… More >

  • Open Access

    ABSTRACT

    Multiscale Modeling of Clathrin-Mediated Endocytosis

    Padmini Rangamani1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 22-22, 2019, DOI:10.32604/mcb.2019.08513

    Abstract Endocytosis is the process of uptake of cargo and fluid from the extracellular space to inside the cell; defects in endo- cytosis contribute to a wide spectrum of diseases including cancer, neurodegeneration, and heart disease. Clathrin- mediated endocytosis (CME) is an archetypal example of a membrane deformation process where multiple variables such as pre-existing membrane curvature, membrane bending due to the protein machinery, membrane tension regulation, and actin-mediated forces govern the progression of vesiculation. My group has been working for the past few years on deciphering the biophysical determinants of CME using multiscale modeling. We… More >

  • Open Access

    ABSTRACT

    Mechanoluminescence in Elastomers: Physics and Multiscale Modeling

    Mikhail Itskov*, Khiȇm Ngoc Vu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 112-112, 2019, DOI:10.32604/icces.2019.05013

    Abstract Mechanoluminescence is a phenomenon where broken chemical bonds send out visible light upon stress application. To this end, special mechanophores are added into the polymer network prior to its vulcanization. As such, bis(adamantyl) 1,2-dioxetane can be used. The breakage of the dioxetane cross-linker is irreversible and can directly be used to assess the damage evolution in rubber-like materials. The intensity of the emitted light correlates with the underlying evolution of chain scission in polymers. In this contribution, an anisotropic analytical network-averaging concept [1] is utilized to model mechanoluminescence, Mullins effect, hysteresis and induced anisotropy in… More >

  • Open Access

    ARTICLE

    Estimation of Isotropic Hyperelasticity Constitutive Models to Approximate the Atomistic Simulation Data for Aluminium and Tungsten Monocrystals

    Marcin Maździarz1, Marcin Gajewski2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.2, pp. 123-150, 2015, DOI:10.3970/cmes.2015.105.123

    Abstract In this paper, the choice and parametrisation of finite deformation polyconvex isotropic hyperelastic models to describe the behaviour of a class of defect-free monocrystalline metal materials at the molecular level is examined. The article discusses some physical, mathematical and numerical demands which in our opinion should be fulfilled by elasticity models to be useful. A set of molecular numerical tests for aluminium and tungsten providing data for the fitting of a hyperelastic model was performed, and an algorithm for parametrisation is discussed. The proposed models with optimised parameters are superior to those used in non-linear More >

  • Open Access

    ARTICLE

    Activation Pattern of Nuclear Factor-kB in Skin after Mechanical Stretch – a Multiscale Modeling Approach

    V.B.Shim 1, K. Mithraratne 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.3, pp. 279-294, 2014, DOI:10.32604/cmes.2014.098.279

    Abstract The activation of NF-kB is an important precursor in developing melanoma. However the role of mechanical stimulation in the NF-kB activation has not been studied. We used a multiscale computational modeling approach to investigate the role of mechanical stimulation and the skin tissue internal structures in the activation of NF-kB. Our model is made up of three levels – 1) the macro level where a FE model of the Zygomaticus major muscle was developed; 2) the meso level where a micro FE model of the skin block using a sample from human cadaver was developed;… More >

  • Open Access

    ARTICLE

    Multiscale Modeling of Collagen Fibril in Bone at Various Crosslink Densities: An Insight into Its Deformation Mechanisms

    S.M. Pradhan1, K.S.Katti1, D.R. Katti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 181-201, 2014, DOI:10.3970/cmes.2014.098.181

    Abstract Multiscale modeling of collagen fibril is carried out by incorporating the material properties of collagen obtained from steered molecular dynamics into the finite element model of collagen fibril with inclusion of crosslinks. The results indicate that the nonbonded interactions between collagen and mineral contribute to the significant enhancement of the elastic modulus of collagen fibril at all the crosslink densities in both the low strain and high strain regimes. The crosslinks are found to play an important role in the mechanical response of collagen fibril, the enhancement in elastic modulus ranging from 5-11% for various More >

  • Open Access

    ARTICLE

    A Multiscale Progressive Failure Modeling Methodology for Composites That Includes Fiber Strength Stochastics

    Trenton M. Ricks1, Thomas E. Lacy, Jr.1,2, Brett A. Bednarcyk3, Steven M.Arnold3, John W. Hutchins1

    CMC-Computers, Materials & Continua, Vol.40, No.2, pp. 99-130, 2014, DOI:10.3970/cmc.2014.040.099

    Abstract A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/ finite element (FE) analyses. A modified twoparameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global… More >

  • Open Access

    ARTICLE

    On Multiscale Modeling Using the Generalized Method of Cells: Preserving Energy Dissipation across Disparate Length Scales

    E. J. Pineda1, B. A. Bednarcyk1, A. M. Waas2, S. M. Arnold1

    CMC-Computers, Materials & Continua, Vol.35, No.2, pp. 119-154, 2013, DOI:10.3970/cmc.2013.035.119

    Abstract A mesh objective crack band model was implemented within the generalized method of cells micromechanics theory. This model was linked to a macroscale finite element model to predict post-peak strain softening in composite materials. Although a mesh objective theory was implemented at the microscale, it does not preclude pathological mesh dependence at the macroscale. To ensure mesh objectivity at both scales, the energy density and the energy release rate must be preserved identically across the two scales. This requires a consistent characteristic length or localization limiter. The effects of scaling (or not scaling) the dimensions More >

Displaying 1-10 on page 1 of 23. Per Page